2.5D images based on reflectance information for the interpretation of architectural heritage
DOI:
https://doi.org/10.4995/raet.2015.3656Keywords:
Architectural heritage, Imagery, Digitization, 2.5Â dimension, Graphical representationAbstract
The evolution of the different documentation and renderization techniques has made substantial improvements in the representation and preservation of cultural heritage in the last 20 years. In the field of photogrammetry, Reflectance Transformation Images (RTI) for interactive representation of the geometric properties of surfaces, are an effective tool for the interpretation and preservation of cultural heritage. The need for specific light conditions and camera positions for RTI generation, have limited its application in the field of archaeology of architecture and urbanism, and has narrowed the application to small objects such as artifacts, sculptures, inscriptions, among others. This study proposes a new workflow that eliminates the dependence on external conditions and scale for representing surfaces of architectural heritage from RTI images. This workflow starts with the three-dimensional virtual reconstruction based on photogrammetric methods and concludes with the generation of 2.5D images based on RTI. The workflow will be demonstrated using a 2.5D representation of the interior topography of the ruins of the Castle Villagarcía de Campos in Spain in order to identify undocumented historical traces.Downloads
References
CHI (Cultural Heritage Imaging), 2010. Guía de visualizadores RTI, Cultural Heritage Imaging and Visual Computing Lab. Italia: ISTI - Italian National Research Council.
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P.,Sarokin, W., Sagar, M. 2000. Acquiring the Reflectance Field of a Human Face, Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques, SIGGRAPH‘00 y Association for computing machinery, New Orleans, EEUU, 25-27 Julio, 145-156. http://dx.doi.org/10.1145/344779.344855
Duffy, S., Byran, P., Earl, G., Beale, G., Pagi, H., Kotouala, E. 2013. Multi-light imaging for heritage applications. United Kingdom: English Heritage.
Earl, G., Basford, P.J., Bischoff, A.S., Bowman, A., Crowther, C., Dahl, J., Hodgson, M., Martínez, K., Isaksen, L., Pagi, H., Piquette, K.E., Kotoula, E. 2011. Reflectance transformation imaging systems for ancient documentary artefacts, Proceedings of the international conference on Electronic Visualisation and the Arts, British Computer Society Swinton,Londres, United Kingdom, 6-8 Julio, 147-154.
Fernández-Martín, J.J., San José-Alonso, J., Martínez-Rubio, J., Finat-Codes, J., Cobos, F. 2006. Evolución de los sistemas de documentación para el estudio de castillos. Proceedings of the international Workshop Aspetti dell’Incastellamento Europeo e Mediterraneo, Universitá degli studi di Firenze, Arezzo, Italia, 10-14 Junio, 127-131.
García-Fernández, J., 2014. La cultural digital para la puesta en valor del patrimonio arquitectónico (tesis doctoral). Universidad de Valladolid, España.
Georghiades A., Belhumeur P.N., Kriegman D. 1999. Illumination-Based Image Synthesis: Creating Novel Images of Human Faces Under Differing Pose and Lighting, Proceeding of the IEEE Workshop on Multi-View Modeling and Analysis of Visual Scenes,Colorado, EEUU, 21-23 Junio, 47-54. http://dx.doi.org/10.1109/MVIEW.1999.781082
Ikeuchi, K., Horn, B. 1981. Numerical shape from shading and occluding boundaries. Artificial Intelligence, 17(3), 141-184. http://dx.doi.org/10.1016/0004-3702(81)90023-0
Kersten, D. 2010. Computational vision, shape from X. Minnesota: University of Minnesota.
Kimmel, R., Sethian, J. 2002. Optimal algorithm for shape from shading and path planning. Journal of Mathematical Imaging and Vision, 14(3), 237-244. http://dx.doi.org/10.1023/A:1011234012449
Malzbender, T., Gelb, D., Wolters, H. 2001. Polynomial Texture Map (.ptm) File Format. EEUU, Palo Alto:Hewlett-Packard Laboratories.
Malzbender, T., Gelb, D. 2001. Polynomial texture maps. Proceedings of the 28th annual conference on Computer Graphics and Interactive Techniques, SIGGRAPH‘01 y Association for computing machinery, Los Angeles, EEUU, 12-17 Agosto, 519-528. http://dx.doi.org/10.1145/383259.383320
Mudge, M., Malzbender, T., Chalmers, A., Scopigno, R., Davis, J., Wang, O., Gunawardane, P., Ashley, M., Doerr, M., Proenca, A., Barbosa, J. 2008. Image-Based Empirical Information Acquisition, Scientific Reliability, and Long-Term Digital Preservation for the Natural Sciences and Cultural Heritage, en EUROGRAPHICS 2008 Tutorial. Greece: The Eurographics Association.
Piquette, K. 2011. Reflectance transformation imaging and ancient Egyptian material culture. Damqatum: The CEHAO newsletter, 7(1), 16-20.
Prados, E., Faugeras, O. 2003. Perspective Shape from Shading” and Viscosity Solutions. Proceedings of the Ninth IEEE International Conference on Computer Vision. Nice, Francia 13-19 Octubre, 826-831. http://dx.doi.org/10.1109/ICCV.2003.1238433
Prados, E., Faugeras, O. 2006. Shape from Shading, en Handbook of Mathematical Models in Computer Vision. EEUU: Springer, 375-388.
Van Overveld, C. 1992. Beyond bump maps: nonlinear mappings for the modeling of geometric details in computer graphics. Computer-Aided Design, 24(4), 201-209. http://dx.doi.org/10.1016/0010-4485(92)90056-G
Wahbeh, W. 2011. Architectural Digital Photogrammetry:Panoramic Image-Based Interactive Modelling,(tesis doctoral). Università degli Studi di Roma “La Sapienza”, Italia.
Weinshall, D. 1994. Local Shape Approximation from Shading. Journal of
Mathematical Imaging and Vision, 4(2), 119-138. http://dx.doi.org/10.1007/BF01249892
YDC2 (Imaging Lab). 2014. Imaging Forum for Cultural Heritage Collections. EEUU: University of Yale.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International