Weed mapping in early-season sunflower fields using images from an unmanned aerial vehicle (UAV)
DOI:
https://doi.org/10.4995/raet.2014.3148Keywords:
precision agriculture, site-specific weed management, visible spectra, high spatial resolution, object-based image analysis (OBIA)Abstract
Weed mapping in early season requires of very high spatial resolution images (pixels <5 cm). Currently only Unmanned Aerial Vehicles (UAV) can take such images. The aim of this work was to evaluate the optimal flight altitude for mapping weeds in an early season sunflower field using a low-cost camera that took images in the visible spectrum at several flight altitudes (40, 60, 80 and 100 m). The object based image analysis procedure used for weed mapping was divided in two main phases: 1) crop-row identification, and 2) crop, weed and bare soil classification. The algorithm identified the crop rows with 100% accuracy at every flight altitude (phase 1) and it detected weed-free zones with 100% accuracy in the images captured at 40 and 60 m flight altitude. In weed-infested zones, the classification algorithm obtained the best results in the images captured at low altitude (40 m), reporting 71% of correctly classified sampling frames (phase 2). Most of errors committed (incorrectly classified frames) were produced by non-detection of weeds (negative false). Subsequent studies would consist in a multi-temporal study aiming to detect weeds are at a more advance growth stage. It could reduce the percentage of negative false in the classification.
Downloads
References
De Castro, A.I., Jurado-Expósito, M., Peña-Barragán, J.M., López-Granados, F. 2012. Airborne multispectral imagery for mapping cruciferous weeds in cereal and legume crops. Precision Agriculture, 13(3): 302-321. http://dx.doi.org/10.1007/s11119-011-9247-0
De Castro, A.I., López-Granados, F., Jurado-Expósito, M. 2013. Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control - Springer. Precision Agriculture, 14(4): 392-413. http://dx.doi.org/10.1007/s11119-013-9304-y
Guerrero, J.M., Guijarro, M., Montalvo, M., Romeo, J., Emmi, L., Ribeiro, A., Pajares, G. 2013. Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Systems with Applications, 40(2): 656-664. http://dx.doi.org/10.1016/j.eswa.2012.07.073
Guijarro, M., Pajares, G., Riomoros, I., Herrera, P.J., Burgos-Artizzu, X.P., Ribeiro, A. 2011. Automatic segmentation of relevant textures in agricultural images. Computers and Electronics in Agriculture, 75(1): 75-83. http://dx.doi.org/10.1016/j.compag.2010.09.013
Lancashire, P.D., Bleiholder, H., Boom, T.V.D., Langelüddeke, P., Stauss, R., Weber, E., Witzenberger, A. 1991. A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119(3): 561-601. http://dx.doi.org/10.1111/j.1744-7348.1991.tb04895.x
López-Granados, F. 2011. Weed detection for sitespecific weed management: mapping and real-time approaches. Weed Research, 51(1): 1-11. http://dx.doi.org/10.1111/j.1365-3180.2010.00829.x
Martín, M.P., Barreto, L., Riaño, D., Fernández-Quintanilla, C., Vaughan, P. 2011. Assessing the potential of hyperspectral remote sensing for the
discrimination of grassweeds in winter cereal crops. International Journal of Remote Sensing, 32(1): 49-67. http://dx.doi.org/10.1080/01431160903439874
Meyer, G.E., Neto, J.C. 2008. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63(2): 282-293. http://dx.doi.org/10.1016/j.compag.2008.03.009
Otsu, N. 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1): 62-66. http://dx.doi.org/10.1109/TSMC.1979.4310076
Peña-Barragán, J.M., Ngugi, M.K., Plant, R.E., Six,J. 2011. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 115(6): 1301-1316. http://dx.doi.org/10.1016/j.rse.2011.01.009
Peña, J.M., Torres-Sánchez, J., de Castro, A.I., Kelly, M., López-Granados, F. 2013. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PLoS ONE, 8(10), e77151. http://dx.doi.org/10.1371/journal.pone.0077151
Rasmussen, J., Nielsen, J., García-Ruiz, F., Christensen, S., Streibig, J.C. 2013. Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Research, 53(4): 242-248. http://dx.doi.org/10.1111/wre.12026
Romeo, J., Pajares, G., Montalvo, M., Guerrero, J. M., Guijarro, M., de la Cruz, J.M. 2013. A new Expert System for greenness identification in agricultural images. Expert Systems with Applications, 40(6): 2275-2286. http://dx.doi.org/10.1016/j.eswa.2012.10.033
Torres-Sánchez, J., López-Granados, F., De Castro, A.I., Peña-Barragán, J.M. 2013. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management. PLoS ONE, 8(3), e58210. http://dx.doi.org/10.1371/journal.pone.0058210
Torres-Sánchez, J., Peña, J.M., de Castro, A.I., López-Granados, F. 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, 103: 104-113. http://dx.doi.org/10.1016/j.compag.2014.02.009
Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen, D.A. 1995. Color indices for weed identification under various soil, residue, and
lighting conditions. Transactions of the American Society of Agricultural Engineers, 38(1): 259-269. http://dx.doi.org/10.13031/2013.27838
Zhang, C., Kovacs, J. 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6): 693-712. http://dx.doi.org/10.1007/s11119-012-9274-5
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International