Spatial distribution of the uncertainty in land cover maps obtained from remote sensing

Authors

  • X. Pons Universitat Autònoma de Barcelona
  • E. Sevillano Grumets Research Group, CREAF
  • G. Moré Grumets Research Group, CREAF
  • P. Serra Grumets Research Group, CREAF
  • D. Cornford Aston University
  • M. Ninyerola Universitat Autònoma de Barcelona

DOI:

https://doi.org/10.4995/raet.2014.3059

Keywords:

hybrid classification, spatial distribution of uncertainty and error, Landsat, multivariate logistic regression, multivariate linear regression

Abstract

When combining remote sensing imagery with statistical classifiers to obtain categorical thematic maps it is not usual to provide data about the spatial distribution of the error and uncertainty of the resulting maps. This paper describes, in the context of GeoViQua FP7 project, feasible approaches for methods based on several steps such as hybrid classifiers. Both for “per pixel” and “per polygon” strategies, the proposal is based on the use of the available ground truth, which is used to properly model the spatial distribution of the errors. Results allow mapping the classification success with a very high level of reliability (R2>0,94), providing users a sound knowledge of the accuracy at every area of the map.

Downloads

Download data is not yet available.

Author Biographies

X. Pons, Universitat Autònoma de Barcelona

Grumets Research Group, Dep. de Geografia, Universitat Autònoma de Barcelona

D. Cornford, Aston University

Computer Science, Aston University. Birmingham

M. Ninyerola, Universitat Autònoma de Barcelona

Grumets Research Group, Dep. Biologia Animal, Vegetal i Ecologia, Universitat Autònoma de Barcelona

References

Balakrishnan, N., 1992. Handbook of the logistic distribution. New York, Marcel Dekker.

Burriel, J.A., Ibáñez, J.J., Pons, X., 2005. Segunda edición del mapa de cubiertas del suelo de Cataluña: Herramienta para la gestión sostenible del territorio. Cuadernos de la Sociedad Española de Ciencias Forestales, 19, 35-39.

CREAF, 2007. Mapa de cobertes del sòl de Catalunya. http://www.creaf.uab.cat/cat/projectes/10_229.htm

Eastman, J. R. 2001. IDRISI32 Release2: Guide to GIS and Image Processing. Worcester: Clark University.

Foody, G.M., 1995. Cross-entropy for the evaluation of the accuracy of a fuzzy land cover classification with fuzzy ground data. ISPRS Journal of Photogrammetry and Remote Sensing, 50(5): 2-12. http://dx.doi.org/10.1016/0924-2716(95)90116-V

Foody, G.M. 2009. Sample size determination for image classification accuracy assessment and comparison. International Journal of Remote Sensing, 30(20): 5273-5291. http://dx.doi.org/10.1080/01431160903130937

Klir, G. J., Folger, T. A., 1988. Fuzzy sets, uncertainty and information. London, Prentice-Hall International.

Moré, G., Pons, X., Serra, P. 2006. Improvements on Classification by Tolerating NoData Values - Application to a Hybrid Classifier to Discriminate Mediterranean Vegetation with a Detailed Legend

Using Multitemporal Series of Images. En: Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE. pp. 192-195. http://dx.doi.org/10.1109/IGARSS.2006,54.

Ninyerola, M., Pons, X., Roure, J. M., 2000. A methodological approach of climatological modelling of air modelling of air temperature and precipitación through GIS techniques. International Journal of Climatology, 20, 1823-1841. http://dx.doi.org/10.1002/1097-0088(20001130)20:14%3C1823::AID-JOC566%3 E3.0.CO;2-B

Norušis, M. J., 2002. SPSS 11.0: Guide to data analysis. Upper Saddle River, Prentice Hall.

Palà, V., Pons, X., 1995. Incorporation of relief in polynomial based geometric corrections. Photogrammetric Engineering & Remote Sensing, 61(9), 935–944.

Pons, X., Solé-Sugrañes, L. 1994. A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data. Remote Sensing of Environment, 48(2): 191-204. http://dx.doi.org/10.1016/0034-4257(94)90141-4

Pons, X. 2004. MiraMon. Geographic Information System and Remote Sensing software. Bellaterra:CREAF.

Pons, X., Ninyerola, M. 2008. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. International Journal of Climatology, 28: 182-1834. http://dx.doi.org/10.1002/joc.1676.

Pons, X., Moré, G., Pesquer, L. 2010. Automatic matching of Landsat image series to high resolution orthorectified imagery. En: Proceedings of the ESA Living Planet Symposium, CD-ROM edition, ESA reference document: SP-686.

Pons, X., Pesquer, L., Cristóbal, J., González-Guerrero, O. 2014. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation, 33: 243-254. http://dx.doi.org/10.1016/j.jag.2014.06.002

Pons, X., Arcalís. A. 2012. Diccionari terminològic de teledetecció. Barcelona: Enciclopèdia Catalana e Institut Cartogràfic de Catalunya.

Rouse, J.W.J., Haas, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. En Third Earth Resources Technology Satellite-1 Symposium, NASA,Washington DC, EE.UU, pp 309-317.

Serra, P., Moré, G., Pons, X. 2009. Thematic accuracy consequences in cadastre land-cover enrichment from a pixel and from a polygon perspective. Photogrammetric Engineering and Remote Sensing, 75(12): 1441-1449. http://dx.doi.org/10.14358/PERS.75.12.1441

Serra, P., Pons, X. 2008. Monitoring farmers’ decisions on Mediterranean irrigated crops using satellite image time series. International Journal of Remote Sensing, 29(8): 2293-2316. http://dx.doi.org/10.1080/01431160701408444

Published

2014-12-16

Issue

Section

Research articles