Use of UAVs for the Study of Antarctic Biota: Applications, Impacts, and Future Prospects. A PRISMA Review

Sol Vasquez-Grados

https://orcid.org/0009-0008-2923-4448

Peru

Universidad Científica del Sur image/svg+xml

B.s. Marine Biology at the Universidad Científica del Sur. Certified professional diver (SSI Divemaster) with experience in conservation, taxonomy and ecology.

Cinthya Bello

https://orcid.org/0000-0003-4154-6379

Peru

Universidad Científica del Sur image/svg+xml

Bióloga (UNFV), con maestría en Gestión Integral de Cuencas Hidrográficas (UNALM), doctorado en Recursos Hídricos (UNALM), cursando Postdoctorado en percepción remota (FURG). Además, cuenta con diplomado en evaluación de impacto ambiental, gestión de la calidad y auditorías ambientales. Con experiencia en glaciología, climatología, recursos hídricos aplicados a la evaluación de ecosistemas antárticos y andinos; desarrollando monitoreos glaciológicos por método glaciológico y geodésico, uso de tecnologías InSAR, radares de penetración en hielo (GPR) en la región antártica y evaluaciones del recurso hídrico (alteraciones hidrológicas) en cuenca andinas como Urubamba-Vilcanota.

 
|

Accepted: 2025-06-17

|

Published: 2025-07-21

DOI: https://doi.org/10.4995/raet.2025.23171
Funding Data

Downloads

Keywords:

UAVs, Antarctica, fauna, flora, environmental monitoring

Supporting agencies:

This research was not funded

Abstract:

Unmanned Aerial Vehicles (UAVs) have established themselves as effective tools for studying remote areas with high precision and low environmental impact, especially in regions such as Antarctica. However, knowledge gaps persist regarding their effects on the biota from this area. Therefore, the objective of this study was to conduct a systematic review of the literature on the use of UAVs in research on Antarctic biota, evaluating their applications, impacts, and future prospects. The PRISMA protocol (a standardized tool for the clear and comprehensive presentation of systematic reviews) was applied, selecting 42 articles published between 2014 and 2024 in English and Spanish. The results show an increase in the use of UAVs since 2018, mainly in studies of marine biota (72.1%), highlighting their usefulness in population censuses, health monitoring, and behavioural analysis. The use of multirotor drones (such as the DJI Phantom 3 and 4) with RGB or multispectral sensors predominated. However, only 37.2% of the studies specify both height and flight time, limiting their replicability. Although UAVs have improved data accuracy and reduced impact on wildlife, variable behavioural responses are observed across species, underscoring the need for standardized protocols. It is concluded that UAVs are valuable tools for conservation and environmental monitoring in Antarctica, but it is crucial to standardize their use, improve sensor quality, and expand their application to less-studied regions and biological groups.

Show more Show less

References:

Australian Government, 2022. Australian Antarctic Strategy & 20 Year Action Plan. Australian Government. https://www.antarctica.gov.au/site/assets/files/53156/2022_update_20yearstrategy.pdf

Auger, M., Morrow, R., Kestenare, E., Sallée, J.-B., Cowley, R., 2021. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nature Communications, 12, 514. https://doi.org/10.1038/s41467-020-20781-1

Baldwin, R. W., Beaver, J. T., Messinger, M., Muday, J., Windsor, M., Larsen, G. D., Silman, M. R., Anderson, T. M., 2023. Camera Trap Methods and Drone Thermal Surveillance Provide Reliable, Comparable Density Estimates of Large, Free- Ranging Ungulates. Animals, 13(11), 1884. https://doi.org/10.3390/ani13111884

Bello, C., Suarez, W., Lavado-Casimiro, W., 2022. Trends and space–time patterns of near-surface temperatures on Maxwell Bay, King George Island, Antarctica. International Journal of Climatology, 42(14), 7426–7442. https://doi.org/10.1002/joc.7661

Belyaev, O., Román, R., Belliure, J., Navarro, G., Barbero, L., Tovar-Sánchez, A., 2024. Assessing topographic features and population abundance in an Antarctic penguin colony through UAV-based deeplearning models. International Journal of Applied Earth Observation and Geoinformation, 134, 104124. https://doi.org/10.1016/j.jag.2024.104124

Bird, C., Dawn, A.H., Dale, J., Johnston, D.W., 2020. A semi-automated method for estimating Adélie penguin colony abundance from a fusion of multispectral and thermal imagery collected with unoccupied aircraft systems. Remote Sensing, 5, 3692. https://doi.org/10.3390/rs12223692

Bollard, B., Doshi, A., Gilbert, N., Poirot, C., Gillman, L., 2022. Drone Technology for Monitoring Protected Areas in Remote and Fragile Environments. Drones, 6, 42. https://doi.org/10.3390/drones6020042

Bollard-Breen, B., Brooks, J. D., Jones, M. R. L., Robertson, J., Betschart, S., Kung, O., Cary, S., Lee, C., Pointing, S. B., 2014. Application of an unmanned aerial vehicle in spatial mapping of terrestrial biology and human disturbance in the McMurdo Dry Valleys, East Antarctica. Polar Biology, 38(4), 573–578. https://doi.org/10.1007/s00300-014-1586-7

Borowicz, A., McDowall, P., Youngflesh, C., Sayre- McCord, T., Clucas, G., Herman, R., Forrest, S., Rider, M., Schwaller, M., Hart, T., Jenouvrier, S., Polito, M., Singh, H., Lynch, H., 2018. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Scientific Reports, 8, 3926. https://doi.org/10.1038/s41598-018-22313-w

Bozkurt, D., Bromwich, D. H., Carrasco, J., Hines, K. M., Maureira, J. C., Rondanelli, R., 2020. Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data. Advances in Atmospheric Sciences, 37(5), 477–493. https://doi.org/10.1007/s00376-020-9183-x.

Calviño-Cancela, M., Martín-Herrero, J., 2016. Spectral Discrimination of Vegetation Classes in Ice-Free Areas of Antarctica. Remote Sensing, 8, 856. https://doi.org/10.3390/rs8100856

Colesie, C., Walshaw, C. V., Sancho, L. G., Davey, M. P., Gray, A., 2023. Antarctica’s vegetation in a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 14(1), e810. https://doi.org/10.1002/wcc.810

Costa, E., dos Santos, M., 2007. Biología Reproductiva E Ecología Comportamental de Skuas Antárticas Catharacta maccormicki E C. lonbergi. Oecol. Bras., 11(1), 78-84. https://doi.org/10.4257/oeco.2007.1101.09

Chen, X., Chen, J., Cheng, X., Zhu, L., Li, B., Li, X., 2021. Retreating shorelines as an emerging threat to Adélie Penguins on Inexpressible Island. Remote Sensing, 13, 4718. https://doi.org/10.3390/rs13224718

Chown, S.L., Leihy, R.I., Naish, T.R., Brooks, C.M., Convey, P., Henley, B.J., Mackintosh, A.N., Phillips, L.M., Kennicutt, M.C. II, Grant, S.M. 2022. Antarctic Climate Change and the Environment: A Decadal Synopsis and Recommendations for Action. Cambridge: Scientific Committee on Antarctic Research.

Council of Managers of National Antarctic Programs [COMNAP]. Antarctic Remotely Piloted Aircraft Systems (RPAS) Operator’s Handbook; Version 6, 15 September 2021; Prepared by the COMNAP RPAS Working Group; 2021. https://static1.squarespace.com/static/61073506e9b0073c7eaaf464/t/614955adb8852a75ab0d5641/1632196017702/COMNAP+RPAS+Handbook+15+September+2021.pdf

Council of Managers of National Antarctic Programs [COMNAP]. Antarctic Remotely Piloted Aircraft Systems (RPAS) Operator’s Handbook; Version 8, 18 December 2023; Prepared by the COMNAP RPAS Working Group; 2023. https://static1.squarespace.com/static/61073506e9b0073c7eaaf464/t/6581640fe595f44f5bee1fcf/1702978580347/COMNAP+RPAS+Handbook+18Dec2023.pdf

Cusick, A., Fudala, K., Pasza, P., Świeżewski, J., Kaleta, J., Oosthuizen, W., Pfeifer, C., Bialik, R., 2024. Using machine learning to count Antarctic shag (Leucocarbo bransfieldensis) nests on images captured by remotely piloted aircraft systems. Ecological Informatics, 84. https://doi.org/10.1101/2024.02.27.582379

Dadrass, F., Samadzadegan, F., Gholamshahi, M., Ashatari Mahini, F., 2022. A Modified YOLOv4 Deep Learning Network for Vision-Based UAV Recognition. Drones, 6(7), 160. https://doi.org/10.3390/drones6070160

Dunn, M.J., Adlard, S., Taylor, A.P., Wood, A.G., Trathan, P.N., Ratcliffe, N., 2021. Un-crewed aerial vehicle population survey of three sympatrically breeding seabird species at Signy Island, South Orkney Islands. Polar Biology, 44, 717–727. https://doi.org/10.1007/s00300-021-02831-6

Durban, J.W., Fearnbach, H., Paredes, A., Hickmott, L.S., LeRoi, D.J., 2021. Size and body condition of sympatric killer whale ecotypes around the Antarctic Peninsula. Marine Ecology Progress Series, 677, 209–217. https://doi.org/10.3354/meps13866

Faisal, S., Mazhar, T., Shloul, T. A., Shahzad, T., Hu, Y. C., Mallek, F., Hamam, H., 2024. Applications, challenges, and solutions of unmanned aerial vehicles in smart city using blockchain. PeerJ. Computer science, 10, e1776. https://doi.org/10.7717/peerjcs.1776

Firla, M., Mustafa, O., Pfeifer, C., Senf, M., Hese, S. 2019. Intraseasonal Variability Of Guano Stains in A Remotely Sensed Penguin Colony Using UAV and Satellite. International Society for Photogrammetry and Remote Sensing, 4(2), 111–118. https://doi.org/10.5194/isprs-annals-IV-2-W5-111-2019.

Fudala, K., Bialik, R.J. 2020. Breeding colony dynamics of southern elephant seals at Patelnia Point, King George Island, Antarctica. Remote Sensing, 12, 2964. https://doi.org/10.3390/rs12182964

Fudala, K., Bialik, R.J. 2022. The use of drone-based aerial photogrammetry in population monitoring of Southern Giant Petrels in ASMA 1, King George Island, maritime Antarctica. Global Ecology and Conservation, 33, e01990. https://doi.org/10.1016/j.gecco.2021.e01990

Fudala, K., Bialik, R.J., 2023. Identifying Important Bird and Biodiversity Areas in Antarctica Using RPAS Surveys—A Case Study of Cape Melville, King George Island, Antarctica. Drones, 7, 538. https://doi.org/10.3390/drones7080538

Goebel, M.E., Perryman, W.L., Hinke, J.T., Krause, D., Hann, N., Gardner, S., LeRoi, D., 2015. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biology, 38, 619–630. https://doi.org/10.1007/s00300-014-1625-4

Harris, C. M., Herata, H., Hertel, F. 2019. Environmental guidelines for operation of Remotely Piloted Aircraft Systems (RPAS): Experience from Antarctica. Biological Conservation, 236, 521–531. https://10.1016/j.biocon.2019.05.019

Hauck, J., Gregor, L., Nissen, C., Patara, L., Hague, M., Mongwe, P., Bushinsky, S., Doney, S., Gruber, N., Le Quéré, C., Manizza, M., Mazloff, M., Monteiro, P., Terhaar, J., 2023. The Southern Ocean carbon cycle 1985–2018: Mean, seasonal cycle, trends, and storage. Global Biogeochemical Cycles, 37, e2023GB007848. https://doi.org/10.1029/2023GB007848

Hinke, J.T., Giuseffi, L.M., Hermanson, V.R., Woodman, S.M., Krause, D.J., 2022. Evaluating Thermal and Color Sensors for Automating Detection of Penguins and Pinnipeds in Images Collected with an Unoccupied Aerial System. Drones, 6, 255. https://doi.org/10.3390/drones6090255

Hodgson, J., Koh, L. 2016. Best practice for minimizing unmanned aerial vehicle disturbance to wildlife in biological field research. Current Biology, 26(10), R387-R407. https://doi.org/10.1016/j.cub.2016.04.001

Isla, E., Gerdes, D., 2019. Ongoing ocean warming threatens the rich and diverse microbenthic communities of the Antarctic continental shelf. Progress in Oceanography, 178, 102180. http://doi.org/10.1016/j.pocean.2019.102180

Khawaja, W., Yaqoob, Q., Guvenc, I. 2023. Detecting, tracking, and classifying unmanned aerial vehicles (UAVs) in a swarm using multi-agent reinforcement learning applied to airborne cognitive multibeam multifunction phased array radar. Drones, 7(7), 470. https://doi.org/10.3390/drones7070470

Kim, J.U., Kim, Y., Oh, Y., Kim, H.C., Kim, J.H. 2023. Antarctic ecosystem recovery following human induced habitat change: recolonization of Adélie Penguins (Pygoscelis adeliae) at Cape Hallett, Ross sea. Diversity, 15(1), 51. https://doi.org/10.3390/d15010051

Krause, D.J., Hinke, J.T., Perryman, W.L., Goebel, M.E., LeRoi, D.J., 2017. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE, 12(11), e0187465. https://doi.org/10.1371/journal.pone.0187465

Krause, D.J., Hinke, J.T., Goebel, M.E., Perryman, W.L., 2021. Drones minimize Antarctic predator responses relative to ground survey methods: An appeal for context in policy advice. Frontiers in Marine Science, 8, 648772. https://doi.org/10.3389/fmars.2021.648772

Korczak-Abshire, M., Kidawa, A., Zmarz, A., Storvold, R., Karlsen, S.R., Rodzewicz, M., Chwedorzewska, K., Znój, A., 2016. Preliminary study on nesting Adélie penguins disturbance by unmanned aerial vehicles. CCAMLR Science, 23, 1–16. https://documents.ats.aq/ATCM40/att/ATCM40_att039_e.pdf

Korczak-Abshire, M., Zmarz, A., Rodzewicz, M., Kycko, M., Karsznia, I., Chwedorzewska, K., 2019. Study of fauna population changes on Penguin Island and Turret Point Oasis (King George Island, Antarctica) using an unmanned aerial vehicle. Polar Biology, 42, 217–224. https://doi.org/10.1007/s00300-018-2379-1

Laborie, J., Christiansen, F., Beedholm, K., Madsen, P.T., Heerah, K., 2021. Behavioural impact assessment of unmanned aerial vehicles on Weddell seals (Leptonychotes weddellii). Journal of Experimental Marine Biology and Ecology, 536, 151509. https://doi.org/10.1016/j.jembe.2020.151509

Malenovský, Z., Lucieer, A., King, D., Turnbull, J., Robinson, S., 2017. Unmanned aircraft system advances health mapping of fragilepolar vegetation. Methods in Ecology and Evolution, 8, 1842–1857. https://doi.org/10.1111/2041-210X.12833

McEvoy, J. F., Hall, G. P., McDonald, P. G., 2016. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition. PeerJ, 4, e1831. https://10.7717/peerj.1831

Miranda, V., Pina, P., Heleno, S., Vieira, G., Mora, C., Schaefer, C.E.G.R., 2020. Monitoring recent changes of vegetation in Fildes Peninsula (King George Island, Antarctica) through satellite imagery guided by UAV surveys. Science of The Total Environment, 704, 135295. https://doi.org/10.1016/j.scitotenv.2019.135295

Mulero-Pázmány, M., Jenni-Eiermann, S., Strebel, N., Sattler, T., Negro, J. J., Tablado, Z., 2017. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PloS one, 12(6), e0178448. https://doi.org/10.1371/journal.pone.0178448

Mustafa, O., Barbosa, A., Krause, D. J., Peter, H.U., Vieira, G., Rümmler, M.C., 2018. State of knowledge: Antarctic wildlife response to unmanned aerial systems. Polar Biology, 41(10). https://doi.org/10.1007/s00300-018-2363-9

Mustafa, O., Braun, C., Esefeld, J., Knetsch, S., Maercker, J., Pfeifer, C., Rümmler, M.C. 2019. Detecting Antarctic Seals and Flying Seabirds by UAV. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4. https://doi.org/10.5194/isprs-annals-IV-2-W5-141-2019

Oosthuizen, W.C., Krüger, L., Jouanneau, W., Lowther, A., 2020. Unmanned aerial vehicle (UAV) survey of the Antarctic shag (Leucocarbo bransfieldensis) breeding colony at Harmony Point, Nelson Island, South Shetland Islands. Polar Biology, 43, 187–191. https://doi.org/10.1007/s00300-019-02616-y

Pfeifer, C., Barbosa, A., Mustafa, O., Peter, H.-U., Rümmler, M.-C., Brenning, A., 2019. Using Fixed-Wing UAV for Detecting and Mapping the Distribution and Abundance of Penguins on the South Shetlands Islands, Antarctica. Drones, 3, 39. https://doi.org/10.3390/drones3020039

Pfeifer, C., Rümmler, M.-C., Mustafa, O., 2021. Assessing colonies of Antarctic shags by unmanned aerial vehicle (UAV) at South Shetland Islands, Antarctica. Antarctic Science, 33(2), 133–149. https://doi.org/10.1017/s0954102020000644

Pina, P., Vieira, G., 2022. UAVs for Science in Antarctica. Remote Sensing 2022, 14(7), 1610. https://doi.org/10.3390/rs14071610

Quiroz, O. M., Romanelli, A.,González, F., Cermelo, L., Dalto, C., 2019. Metodología SIG para el análisis de la dinámica, monitoreo y remediación de un sistema playa- duna del sudeste bonaerense, Argentina. GeoFocus, 24, 77-97. http://dx.doi.org/10.21138/GF.631

Raniga, D., Amarasingam, N., Sandino, J., Doshi, A., Barthelemy, J., Randall, K., Robinson, S.A., Gonzalez, F., Bollard, B., 2024. Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI. Sensors 2024, 24, 1063. https://doi.org/10.3390/s24041063

Ratcliffe, N.; Guihen, D.; Robst, J.; Crofts, S.; Stanworth, A.; Enderlein, P. 2015. A protocol for the aerial survey of penguin colonies using UAVs. Journal of Unmanned Vehicle Systems, 3, 95–101. https://doi.org/10.1139/juvs-2015-0006

Román, A., Navarro, G., Caballero, I., Tovar-Sánchez, A., 2022. High-spatial resolution UAV multispectral data complementing satellite imagery to characterize a chinstrap penguin colony ecosystem on deception island (Antarctica). GIScience & Remote Sensing, 59(1), 1159–1176. https://doi.org/10.1080/15481603.2022.2101702

Román, A., Tovar-Sánchez, A., Fernández-Marín, B., Navarro, G., Barbero, L., 2023. Characterization of an antarctic penguin colony ecosystem using high-resolution UAV hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 125, 103565. https://doi.org/10.1016/j.jag.2023.103565

Rümmler, M.-C., Mustafa, O., Maercker, J., Peter, H.-U., Esefeld, J., 2016. Measuring the influence of unmanned aerial vehicles on Adélie penguins. Polar Biology, 39, 1329–1334. https://doi.org/10.1007/s00300-015-1838-1

Rümmler, M. C., Mustafa, O., Maercker, J., Peter, H. U., Esefeld, J., 2018. Sensitivity of Adélie and Gentoo penguins to various flight activities of a micro UAV. Polar Biology, 41, 2481–2493.https://doi.org/10.1007/s00300-018-2385-3.

Rümmler, M.-C., Esefeld, J., Hallabrin, M.T., Pfeifer, C., Mustafa, O., 2021a. Emperor penguin reactions to UAVs: First observations and comparisons with effects of human approach. Remote Sensing Applications: Society and Environment, 23, 100558. https://doi.org/10.1016/j.rsase.2021.100545

Rümmler, M.-C., Esefeld, J., Pfeifer, C., Mustafa, O., 2021b. Effects of UAV overflight height, UAV type, and season on the behaviour of emperor penguin adults and chicks. Remote Sensing Applications: Society and Environment, 23, 100558. https://doi.org/10.1016/j.rsase.2021.100558

Siegert, M.J., Bentley, M.J., Atkinson, A., Bracegirdle, T.J., Convey, P., Davies, B., Downie, R., Hogg, A.E., Holmes, C., Hughes, K.A., Meredith, M.P., Ross, N., Rumble, J., Wilkinson, J., 2023. Antarctic extreme events. Frontiers in Environmental Science, 11, 1229283. https://doi.org/10.3389/fenvs.2023.1229283

Sotille, M.E., Bremer, U.F., Vieira, G., Velho, L.F., Petsch, C., Simões, J.C., 2020. Evaluation of UAV and satellite-derived NDVI to map maritime Antarctic vegetation. Applied Geography, 125, 102322. https://doi.org/10.1016/j.apgeog.2020.102322

Sotille, M.E., Bremer, U.F., Vieira, G., Velho, L.F., Petsch, C., Auger, J., Simões, J.C., 2022. UAVbased classification of maritime Antarctic vegetation types using GEOBIA and random forest. Ecological Informatics, 71(7), 101768. https://doi.org/10.1016/j.ecoinf.2022.101768

Tovar-Sánchez, A., Román, A., Roque-Atienza, D., Navarro, G., 2021. Applications of unmanned aerial vehicles in Antarctic environmental research. Science Reports, 11, 21717. https://doi.org/10.1038/s41598-021-01228-z

Turner, D., Lucieer, A., Malenovský, Z., King, D. H., Robinson, S. A., 2014. Spatial Co-Registration of Ultra-High Resolution Visible, Multispectral and Thermal Images Acquired with a Micro-UAV over Antarctic Moss Beds. Remote Sensing, 6(5), 4003-4024. https://doi.org/10.3390/rs6054003

Turner, J., Lu, H., White, I., King, J., Phillips, T., Hosking, J.S., Bracegirdle, T., Marshall, J., Mulvaney, J., Deb, P., 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411–415. https://doi.org/10.1038/nature18645

Vas, E., Lescroël, A., Duriez, O., Boguszewski, G., Grémillet, D., 2015. Approaching birds with drones: first experiments and ethical guidelines. Biol. Lett. 11, 20140754. https://doi.org/10.1098/rsbl.2014.0754

Walton, D., Clarkson, P., Summerhayes, C., 2018. Science in the Snow: Sixty years of international collaboration through the Scientific Committee on Antarctic Research. 2nd edition. Cambridge, SCAR. 321 pp.

Weimerskirch, H., Prudor, A., Schull, Q., 2018. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biology, 41, 259–266. https://doi.org/10.1007/s00300-017-2187-z

Zhou, H., Ma, A., Niu, Y., Ma, Z., 2022. Small-Object Detection for UAV-Based Images Using a Distance Metric Method. Drones, 6(10), 308. https://doi.org/10.3390/drones6100308

Zmarz, A., Rodzewicz, M., Dąbski, M., Karsznia, I., Korczak-Abshire, M., Chwedorzewska, K. J., 2018. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sensing of Environment, 217, 375–388. https://doi.org/10.1016/j.rse.2018.08.031

Show more Show less