Evaluation of the different spectral indices to map biocrust using spectral information

M. Alonso, E. Rodríguez-Caballero, S. Chamizo, P. Escribano, Y. Cantón


Biological soil crusts (BSC) are complex communities formed by a close association of soil particles and cyanobacteria, algae, microfungi, lichens or bryophytes that live within or immediately on top of the uppermost millimeters of the soil surface. These communities cover non vegetated areas in most of the arid and semiarid ecosystems, and modify numerous soil surface properties and ecosystem processes. Given the importance of BSC in ecosystem functioning, accurate and spatially explicit information on the distribution of BSC is mandatory. With this objective, considerable effort has been devoted to identify and map BSC using remote sensing data, and some spectral indices have been developed. These indexes use the spectral differences among BSC and other surface components like vegetation or bare soil to identify the areas dominated by BSC. Our main objective is to test the feasibility of the previous indices published in the literature for mapping different types of BSC in a complex study area, where these index have not been developed, at different spatial scales. Our results showed the low capability of indexes based on multiespectral images to identify areas covered by BSCat field and image spatial scales. Hyperspetral indices, on the other hand, showed better results than those obtained with multispectral indices, with an accuracy around 71% because they analyzed specific absorption features related with photosynthetic pigments like chlorophyll and carotenoids. We can conclude that the spatial heterogeneity of the area and the spectral similarities among BSC, green and dry vegetation or bare soil makes it difficult to correctly distinguish BSC in arid and semiarid ecosystems using only multispectral information, whereas hyperspectral images offer an important tool to map different types of BSC and to discriminate among these and other surface components.


biological soil crust; hyperspectral; semiarid; remote sensing; radiometry; spectral indices

Full Text:



Belnap, J. 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes, 20(15): 3159-3178. http://dx.doi.org/10.1002/hyp.6325

Belnap, J., Gardner, J.S. 1993. Soil microstructure in soils of the Colorado Plateau: The role of the cyanobacterium Microcoleus vaginatus. Great Basin Naturalist, 53: 40-47.

Belnap, J., Phillips, S.L., Witwicki, D.L., Miller, M.E. 2008. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. Journal of Arid

Environments, 72(7): 1257-1264. http://dx.doi. org/10.1016/j.jaridenv.2008.02.019

Boeken, B., Ariza, C., Gutterman, Y., Zaady, E. 2004. Environmental factors affecting dispersal,germination and distribution of Stipa capensis

in Negev Desert, Israel. Ecological Research, 19(5): 533-540. http://dx.doi.org/10.1111/j.1440-1703.2004.00666.x

Bowker, M.A., Belnap, J., Bala Chaudhary, V., Johnson, N.C. 2008. Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts. Soil Biology and Biochemistry, 40(9): 2309-2316.


Cantón, Y., Del Barrio, G., Solé-Benet, A., Lázaro, R. 2004. Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. Catena, 55(3): 341-365. http://dx.doi.org/10.1016/S0341-8162(03)00108-5

Cantón, Y., Domingo, F., Solé-Benet, A.,Puigdefábregas, J. 2001. Hydrological and erosion response of a badlands system in semiarid SE Spain. Journal of Hydrology, 252(1-4): 65-84. http://dx.doi.org/10.1016/S0022-1694(01)00450-4

Cantón, Y., Solé-Benet, A., de Vente, J., Boix-Fayos, C., Calvo-Cases, A., Asensio, C., et al. 2011. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. Journal of Arid

Environments, 75(12): 1254-1261. http://dx.doi.org/10.1016/j.jaridenv.2011.03.004

Castillo-Monroy, A.P., Maestre, F.T. 2011. Biological soil crusts: Recent advances in our knowledge of their structure and ecological function. Revista Chilena de Historia Natural, 84(1): 1-21. http://dx.doi.org/10.4067/S0716-078X2011000100001

Castillo-Monroy, A.P., Maestre, F.T., Delgado-Baquerizo, M., Gallardo, A. 2010. Biological soil crusts modulate nitrogen availability in semiarid

ecosystems: Insights from a Mediterranean grassland. Plant and Soil, 333(1-2): 21- 34. http://dx.doi.org/10.1007/s11104-009-0276-7

Chamizo, S., Cantón, Y., Domingo, F., Belnap, J. 2013. Evaporative losses from soils covered by physical and different types of biological soil crusts. Hydrological Processes, 27(3): 324-332. http://dx.doi.org/10.1002/hyp.8421

Chamizo, S., Cantón, Y., Lázaro, R., Solé-Benet, A., Domingo, F. 2012a. Crust Composition and Disturbance Drive Infiltration through Biological

Soil Crusts in Semiarid Ecosystems. Ecosystems, 15(1): 148-161. http://dx.doi.org/10.1007/s10021-011-9499-6

Chamizo, S., Cantón, Y., Miralles, I., Domingo, F., 2012b. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 49: 96-105. http://dx.doi.org/10.1016/j.soilbio.2012.02.017

Chamizo, S., Stevens, A., Cantón, Y., Miralles, I., Domingo, F., Van Wesemael, B. 2012c. Discriminating soil crust type, development stage

and degree of disturbance in semiarid environments from their spectral characteristics. European Journal of Soil Science, 63(1): 42-53. http://dx.doi.org/10.1111/j.1365-2389.2011.01406.x

Chen, J., Ming, Y.Z., Wang, L., Shimazaki, H., Tamura, M. 2005. A new index for mapping lichen-dominated biological soil crusts in desert areas. Remote Sensing of Environment, 96(2): 165-175.


Clark, R.N., Roush, T.L. 1984. Reflectance spectroscopy: Quantitative-analysis techniques for remote-sensing applications. Journal of Geophysical Research, 89(B7): 6329-6340. http://dx.doi.org/10.1029/JB089iB07p06329

Concostrina-Zubiri, L., Huber-Sannwald, E., Martínez, I., Flores Flores J.L., Escudero, A. 2013. Biological soil crusts greatly contribute to small-scale soil heterogeneity along a grazing gradient. Soil Biology & Biochemistry, 64: 28-36. http://dx.doi.org/10.1016/j.soilbio.2013.03.029

Congalton, R.G., Green, K. 2008. Assessing the accuracy of remotely sensed data: Principles and practices, 2nd Edition. CRC Press, Taylor & Francis group

Cortina, J., Martín, N., Maestre F.T., Bautista,S. 2010. Disturbance of the biological soil crusts and performance of Stipa tenacissima in a semi-arid

Mediterranean steppe. 2010. Plant Soil, 334(1-2):311-322. http://dx.doi.org/10.1007/s11104-010-0384-4

DeFalco, L.A., Detling, J.K., Tracy, C.R., Warren,S.D. 2001. Physiological variation among native and exotic winter annual plants associated with microbiotic crust in the Mojave Desert. Plant and Soil, 234(1):1-14. http://dx.doi.org/10.1023/A:1010323001006

Eldridge, D.J., Bowker, M.A., Maestre, F.T., Alonso, P., Mau, R.L., Papadopoulos, J., et al. 2010. Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems, 13(4): 499-510.http://dx.doi.org/10.1007/s10021-010-9335-4

Escribano, P., Palacios-Orueta, A., Oyonarte, C., Chabrillat, S. 2010. Spectral properties and sources of variability of ecosystem components in a Mediterranean semiarid environment. Journal of Arid Environments, 74(9): 1041- 1051. http://dx.doi.org/10.1016/j.jaridenv.2010.02.001

Graetz, R.D., Gentle, M.R. 1982. The relationships between reflectance in the Landsat wavebands and the composition of an Australian semi-arid shrub rangeland. Photogrammetric Engineering and Remote Sensing, 48(11): 1721-1730.

Grote, E.E., Belnap, J., Housman, D.C., Sparks, J.P. 2010. Carbon exchange in biological soil crust communities under differential temperatures and soil water content: Implications for global change.

Global Change Biology,16(10): 2763-2774. http://dx.doi.org/10.1111/j.1365-2486.2010.02201.x

Jacobberger, P.A. 1989. Reflectance characteristics and surface processes in stabilized dune environments. Remote Sensing of Environment, 28, 287-295. http://dx.doi.org/10.1016/0034-4257(89)90120-X

Karnieli, A., Tsoar, H. 1995. Spectral reflectance of biogenic crust developed on desert dune sand along the Israel-Egypt border. International Journal of Remote Sensing, 16(2): 369-374.


Karnieli, A., 1997. Development and implementation of spectral crust index over dune sands. International Journal of Remote Sensing, 18(6): 1207-1220. http://dx.doi.org/10.1080/014311697218368

Karnieli, A., Kidron, G.J., Glaesser, C., Ben-Dor, E. 1999. Spectral characteristics of cyanobacteria soil crust in semiarid environments. Remote Sensing of Environment, 69, 67-75

Karnieli, A., Rozenstein, O. 2014. Identification and characterization of Biological Soil Crusts in a sand dune desert environment across Israel-Egypt border using LWIR emittance spectroscopy. Journal of Arid

Environments. (In press). http://dx.doi.org/10.1016/j.jaridenv.2014.01.017

Karnieli, A., Sarafis, V. 1996. Reflectance spectrophotometry of cyanobacteria within soil crusts - a diagnostic tool. International Journal of Remote Sensing, 17(8): 1609-1615. http://dx.doi.org/10.1080/01431169608948726

Karnieli, A., Shachak, M., Tsoar, H., Zaady, E., Kaufman, Y., Danin, A., Porter, W. 1996. The effect of microphytes on the spectral reflectance

of vegetation in semiarid regions. Remote Sensing of Environment, 57(2): 88-96. http://dx.doi.org/10.1016/0034-4257(95)00209-X

Kidron, G.J. 2014. The negative effect of biocrusts upon annual-plant growth on sand dunes during extreme droughts. Journal of Hydrology, 508: 128-136. http://dx.doi.org/10.1016/j.jhydrol.2013.10.045

Kidron, G.J. 2007. Millimeter-scale microrelief affecting runoff yield over microbiotic crust in the Negev Desert. Catena, 70(2): 266-273. http://dx.doi.org/10.1016/j.catena.2006.08.010

Kidron, G.J., Monger, H.C., Vonshak, A., Conrod, W. 2012. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology, 139-140:484-494.

Kidron, G.J., Vonshak, A., Dor, I., Barinova, S., Abeliovich, A. 2010. Properties and spatial distribution of microbiotic crusts in the Negev

Desert, Israel. Catena, 82(2): 92-101. http://dx.doi.org/10.1016/j.catena.2010.05.006

Lázaro, R., Cantón, Y., Solé-Benet, A., Bevan, J., Alexander, R., Sancho, L.G., et al. 2008. The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the

Tabernas badlands (SE Spain) and its landscape effects. Geomorphology, 102(2): 252-266. http://dx.doi.org/10.1016/j.geomorph.2008.05.005

Lázaro, R., Rodrigo, F.S., Gutiérrez, L., Domingo, F., Puigdefábregas, J. 2001. Analysis of a 30-year rainfall record (1967-1997) in semi-arid SE

Spain for implications on vegetation. Journal of Arid Environments, 48(3): 373-395. http://dx.doi.org/10.1006/jare.2000.0755

Ludwig, J.A., Wilcox, B.P., Breshears, D.D., Tongway, D.J., Imeson, A.C. 2005. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86: 288-


Menon, M., Yuan, Q., Jia, X., Dougill, A.J., Hoon, S.R., Thomas, A.D., et al. 2011. Assessment of physical and hydrological properties of biological soil crusts using X-ray microtomography and modeling.

Journal of Hydrology, 397(1-2): 47-54. http://dx.doi.org/10.1016/j.jhydrol.2010.11.021

Miralles-Mellado, I., Cantón, Y., Solé-Benet, A. 2011. Two-dimensional porosity of crusted silty soils: Indicators of soil quality in semiarid rangelands? Soil Science Society of America Journal, 75(4): 1330-1342. http://dx.doi.org/10.2136/sssaj2010.0283

Nagler, P.L., Daughtry, C.S.T., Goward, S.N. 2000. Plant litter and soil reflectance. Remote Sensing of Enviroment, 71(2): 207-215. http://dx.doi.org/10.1016/S0034-4257(99)00082-6

O’Neill, A. L. 1994. Reflectance spectra of microphytic soil crusts in semiarid Australia. Internatonal Journal of Remote Sensing, 15(3): 675-681. http://dx.doi.org/10.1080/01431169408954106

Pinker, R.T., Karnieli, A. 1995. Characteristic spectral reflectance of a semi-arid environment. International Journal of Remote Sensing, 16(7): 1341-1363. http://dx.doi.org/10.1080/01431169508954480

Puigdefábregas, J. 2005. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surface Processes and Landforms, 30(2), 133-147. http://dx.doi.org/10.1002/esp.1181

Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Afana, A., Solé-Benet, A. 2012. Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology, 145-146: 81-89. http://dx.doi.org/10.1016/j.geomorph.2011.12.042

Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Lázaro, R., Escudero, A. 2013. Soil loss and runoff in semiarid ecosystems: A complex interaction between biological soil crusts, micro-topography, and hydrological drivers. Ecosystems, 16(4): 1-18. http://dx.doi.org/10.1007/s10021-012-9626-z

Rodríguez-Caballero,E., Escribano, P., Cantón, Y. 2014. Advanced image processing methods as a tool to map and quantify different types of biological soil crust. ISPRS Journal of Photogrammetry and Remote Sensing, 90: 59-67. http://dx.doi.org/10.1016/j.isprsjprs.2014.02.002

Rollin, E.M., Milton, E.J., Roche, P. 1994. The influence of weathering and lichen cover on the reflectance spectra of granitic rocks. Remote Sensing

of Environment, 50(2): 194-199. http://dx.doi.org/10.1016/0034- 257(94)90045-0

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium, NASA SP-351, vol. 1, Washington, DC, NASA (1973), pp.


Schlesinger, W.H. Pilmanis, A.M. 1998. Plant-soil interactions in deserts. Biogeochemistr, 42(1-2): 169-187. http://dx.doi.org/10.1023/A:1005939924434

Tongway, D., Hindley, N. 2004. Landscape function analysis: A system for monitoring rangeland function. African Journal of Range and

Forage Science, 21(2): 109-113. http://dx.doi.org/10.2989/10220110409485841

Tongway, D., Hindley, N. 1995. Assesment of soil condition of tropical grasslands. CSIRO Ecology and Wildlife, Canberra, Australia. Tsoar, H., Karnieli, A. 1996. What determines the spectral reflectance of the Negev Sinai sand dunes. International Journal of Remote Sensing, 17(3): 513-525. http://dx.doi.org/10.1080/01431169608949024

Warren, S.D. 2003. Biological soil crusts and hydrology in North American deserts. pp. 327-337. In J. Belnap and O. L. Lange, eds. Biological Soil Crusts: Structure, Function, and Management, Vol. 150. Springer-Verlag, Berlin.http://dx.doi.org/10.1007/978-3-642-56475-8_24

Weber, B., Olehowski, C., Knerr, T., Hill, J., Deutschewitz, K., Wessels, D.C.J., et al. 2008. A new approach for mapping of Biological Soil Crusts

in semidesert areas with hyperspectral imagery. Remote Sensing of Environment, 112(5): 2187-2201. http://dx.doi.org/10.1016/j.rse.2007.09.014

West, N.E. 1990. Structure and function of mycrophytic soil crusts in wildland ecosystems of arid to semiarid regions. Advances in Ecological Research, 20: 179-223. http://dx.doi.org/10.1016/S0065-2504(08)60055-0

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Spectral Response Analysis: An Indirect and Non-Destructive Methodology for the Chlorophyll Quantification of Biocrusts
José Raúl Román, Emilio Rodríguez-Caballero, Borja Rodríguez-Lozano, Beatriz Roncero-Ramos, Sonia Chamizo, Pilar Águila-Carricondo, Yolanda Cantón
Remote Sensing  vol: 11  issue: 11  first page: 1350  year: 2019  
doi: 10.3390/rs11111350


This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet