Monitoring the latent and sensible heat fluxes in vineyard by applying the energy balance model METRIC

J. González-Piqueras, J. Villodre, I. Campos, A. Calera, C. Balbontín


The monitoring of the energy fluxes over vineyard applying the one source energy balance model METRIC (Allen et al., 2007b) are shown in this work. This model is considered operaive because it uses an internalized calibration method derived from the selection of two extreme pixels in the scene, from the minimum ET values such as the bare soil to a maximum that corresponds to full cover active vegetation. The model provides the maps of net radiation (Rn), soil heat flux (G), sensible heat (H), latent heat (LE), evapotranspiration (ET) and crop coefficient (Kc). The flux values have been validated with a flux tower installed in the plot, providing a RMSE for instantaneous fluxes of 43 W m2, 33 W m2, 55 W m2 y 40 W mon Rn, G, H and LE. In relative terms are 8%, 29%, 21% and 20% respectively. The RMSE at daily scale for the ET is 0.58 mm day-1, with a value in the crop coefficient for the mid stage of 0.42±0.08. These results allow considering the model adequate for crop monitoring and irrigation purposes in vineyard. The values obtained have been compared to other studies over vineyard and with alternative energy balance models showing similar results.


Evapotranspiration; crop coefficient; latent heat; vineyard; energy balance

Full Text:



Allen, R. G., Burnett, B., Kramber, W., Huntington, J., Kjaersgaard, J., Kilic, A., Trezza, R. 2013a. Automatic calibration of the METRIC-Landsat evapotranspiration process. Journal of the AmericanWater Resources Association, 49(3), 14.

Allen, R. G., Irmak, A., Trezza, R., Hendrickx, J. M., Bastiaanssen, W., Kjaersgaard, J. 2011. Satellitebased ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011-4027.

Allen, R. G., Pereira, L. S., Raes, D., Smith, M. 1998. Crop Evapotranspiration. Guidelines for computing crop water requirements. (Vol. 56), Food and Agriculture Organization.

Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Robison, C. W. 2007a. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Applications. Journal of irrigation and drainage engineering, 133(4), 395-406.

Allen, R. G., Tasumi, M., Trezza, R. 2007b. Satellitebased energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. Journal of irrigation and drainage engineering, 133(4), 380-394.

Allen, R. G., Trezza, R., Kilic, A., Tasumi, M., Li, H. 2013b. Sensitivity of Landsat-Scale Energy Balance to Aerodynamic Variability in Mountains and Complex Terrain. Journal of the American Water Resources Association, 49(3), 592-604.

Balbontin-Nesvara, C., Calera-Belmonte, A., González-Piqueras, J., Campos-Rodríguez, I., López-González, M. L., Torres-Prieto, E. 2011. Vineyard Evapotranspiration Measurements in a Semiarid Environment: Eddy Covariance and Bowen Ratio Comparison. Agrociencia, 45, 87-103.

Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., Holtslag, A. A. M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL): 1.Formulation. Journal of Hydrology, 212-213(1-4), 198-212. Http://

Berk, A., Bernstein, L. S., Anderson, G. P., Acharya, P. K., Robertson, D. C., Chetwynd, J. H., Adler-Golden, S. M. 1998. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sensing of Environment, 65(3), 367-375.

Campos, I., Neale, C. M. U., Calera, A., Balbontín, C., González-Piqueras, J. 2010. Assessing satellitebased basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agricultural Water Management, 98(1), 45-54.

Carrasco-Benavides, M., Ortega-Farías, S., Lagos, L. O., Kleissl, J., Morales, L., Poblete-Echeverría, C., Allen, R. G. 2012. Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images. Irrigation Science, 30(6), 485-497.

Coll, C., Galve, J. M., Sánchez, J. M., Caselles, V. 2010. Validation of landsat-7/ETM+ thermalband calibration and atmospheric correction with ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing, 48(1), 547-555.

González-Dugo, M. P., González-Piqueras, J., Campos, I., Andreu, A., Balbontín, C., Calera, A. 2012a. Evapotranspiration monitoring in a vineyard using satellite-based thermal remote sensing. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, 8531.

González-Dugo, M. P., González-Piqueras, J., Campos, I., Balbontín, C., Calera, A. 2012b. Estimation of surface energy fluxes in vineyard using field measurements of canopy and soil temperature. In C. M. U. Neale & M. H. Cosh (Eds.), Remote Sensing and Hydrology (Vol. 352, pp. 59-62). Wallingford: Int Assoc Hydrological Sciences.

González-Dugo, M. P., Mateos, L. 2008. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agricultural Water Management, 95(1), 48-58.

González-Dugo, M. P., Neale, C. M. U., Mateos, L., Kustas, W. P., Prueger, J. H., Anderson, M. C. 2009. A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agricultural and Forest Meteorology, 149, 1843-1853.

Horst, T. W., Weil, J. C., 1994. Footprint estimation for scalar flux measurements in the Atmospheric surface layer. Boundary-Layer Meteorology, 59, 279-296.

INM. 2004. Guía resumida del clima de España 1971-2000. In I. N. d. Meteorología (Ed.). Madrid.

Kustas, W. P. 1990. Estimates of Evapotranspiration With a One- and Two-Layer Model of Heat Transfer Over Partial Canopy Cover. Journal of Applied Meteorology, 29(8), 704-715.<0704:EOEWAO>2.0.CO;2

Norman, J. M., Kustas, W. P., Humes, K. S. 1995. A twosource approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3-4), 263-293.

Padilla, F. L. M., González-Dugo, M. P., Gavilán, P., Domínguez, J. 2011. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn. Hydrology and Earth System Sciences, 15, 1213-1225.

Payero, J. O., Neale, C. M. U., Wright, J. L. 2005. Estimating Soil Heat Flux for Alfalfa and Clipped Tall Fescue Grass. Applied Engineering in Agriculture, 21(3), 1-9.

Pôças, I., Paço, T. A., Cunha, M., Andrade, J. A., Silvestre, J., Sousa, A., Allen, R. G. 2014. Satellitebased evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems Engineering, 128, 69-81.

Sánchez, J. M., Kustas, W. P., Caselles, V., Anderson, M. C. 2008a. Modelling surface energy fluxes over maize using a two source path model and radiometric soil and canopy temperature observations. Remote Sensing of Environment, 112(3), 1130-1143.

Sánchez, J. M., López-Urrea, R., Rubio, E., Caselles,V. 2011. Determining irrigation needs of sorghum from two-source energy balance and radiometric temperatures. Hydrology and Earth System Sciences Discuss., 8, 3937-3960.

Sánchez, J. M., López-Urrea, R., Rubio, E., González-Piqueras, J., Caselles, V. 2014. Assessing crop coefficients of sunflower and canola using twosource energy balance and thermal radiometry. Agricultural Water Management, 137, 23-29.

Sánchez, J. M., Scavone, G., Caselles, V., Valor, E., Copertino, V. A., Telesca, V. 2008b. Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 351(1-2), 58-70.

Sánchez, N., Martínez-Fernández, J., González-Piqueras, J., González-Dugo, M. P., Baroncini-Turrichia, G., Torres, E., Pérez-Gutiérrez, C. 2012. Water balance at plot scale for soil moisture estimation using vegetation parameters. Agricultural and Forest Meteorology, 166-167, 1-9.

Santos, C., Lorite, I. J., Allen, R. G., Tasumi, M. 2012. Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain. Water Resources Management, 26(11), 3267-3283.

Tasumi, M., Allen, R. G., Trezza, R. 2008. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering, 13(2), 51-63.

Trezza, R., Allen, R. G., Tasumi, M. 2013. Estimation of actual evapotranspiration along the Middle Rio Grande of New Mexico using MODIS and landsat imagery with the METRIC model. Remote Sensing, 5(10), 5397-5423.

Valor, E., Caselles, V. 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57(3), 167-184.

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., Rowe, C. M. 1985. Statistics for the evaluation and comparison of models. Journal of Geophysical Research-Oceans, 90(NC5), 8995-9005.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Evaluation of Penman-Monteith Model Based on Sentinel-2 Data for the Estimation of Actual Evapotranspiration in Vineyards
Víctor García-Gutiérrez, Claudio Stöckle, Pilar Macarena Gil, Francisco Javier Meza
Remote Sensing  vol: 13  issue: 3  first page: 478  year: 2021  
doi: 10.3390/rs13030478


This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953