Monitoring the latent and sensible heat fluxes in vineyard by applying the energy balance model METRIC

Authors

  • J. González-Piqueras Universidad de Castilla-La Mancha
  • J. Villodre Universidad de Castilla-La Mancha
  • I. Campos Universidad de Castilla-La Mancha
  • A. Calera Universidad de Castilla-La Mancha
  • C. Balbontín Universidad de Talca

DOI:

https://doi.org/10.4995/raet.2015.2310

Keywords:

Evapotranspiration, crop coefficient, latent heat, vineyard, energy balance

Abstract

The monitoring of the energy fluxes over vineyard applying the one source energy balance model METRIC (Allen et al., 2007b) are shown in this work. This model is considered operaive because it uses an internalized calibration method derived from the selection of two extreme pixels in the scene, from the minimum ET values such as the bare soil to a maximum that corresponds to full cover active vegetation. The model provides the maps of net radiation (Rn), soil heat flux (G), sensible heat (H), latent heat (LE), evapotranspiration (ET) and crop coefficient (Kc). The flux values have been validated with a flux tower installed in the plot, providing a RMSE for instantaneous fluxes of 43 W m2, 33 W m2, 55 W m2 y 40 W mon Rn, G, H and LE. In relative terms are 8%, 29%, 21% and 20% respectively. The RMSE at daily scale for the ET is 0.58 mm day-1, with a value in the crop coefficient for the mid stage of 0.42±0.08. These results allow considering the model adequate for crop monitoring and irrigation purposes in vineyard. The values obtained have been compared to other studies over vineyard and with alternative energy balance models showing similar results.

Downloads

Download data is not yet available.

Author Biographies

J. González-Piqueras, Universidad de Castilla-La Mancha

Titular de Universidad, Departamento de Física Aplicada, Grupo de Teledetección y SIG - IDR, Universidad de Castilla-La Mancha

J. Villodre, Universidad de Castilla-La Mancha

Investigador, Grupo de Teledetección y SIG - IDR, Universidad de Castilla-La Mancha

I. Campos, Universidad de Castilla-La Mancha

Investigador, Grupo de Teledetección y SIG - IDR, Universidad de Castilla-La Mancha

A. Calera, Universidad de Castilla-La Mancha

Catedrático de Escuela Universitaria, Departamento de Fisica Aplicada, Grupo de Teledetección y SIG - IDR, Universidad de Castilla-La Mancha

C. Balbontín, Universidad de Talca

Investigador, Centro de Investigación y Transferencia en Riego y Agroclimatología (CITRA), Universidad de Talca

References

Allen, R. G., Burnett, B., Kramber, W., Huntington, J., Kjaersgaard, J., Kilic, A., Trezza, R. 2013a. Automatic calibration of the METRIC-Landsat evapotranspiration process. Journal of the AmericanWater Resources Association, 49(3), 14. http://dx.doi.org/10.1111/jawr.12056

Allen, R. G., Irmak, A., Trezza, R., Hendrickx, J. M., Bastiaanssen, W., Kjaersgaard, J. 2011. Satellitebased ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011-4027. http://dx.doi.org/10.1002/hyp.8408

Allen, R. G., Pereira, L. S., Raes, D., Smith, M. 1998. Crop Evapotranspiration. Guidelines for computing crop water requirements. (Vol. 56), Food and Agriculture Organization.

Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Robison, C. W. 2007a. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Applications. Journal of irrigation and drainage engineering, 133(4), 395-406. http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)

Allen, R. G., Tasumi, M., Trezza, R. 2007b. Satellitebased energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model. Journal of irrigation and drainage engineering, 133(4), 380-394. http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)

Allen, R. G., Trezza, R., Kilic, A., Tasumi, M., Li, H. 2013b. Sensitivity of Landsat-Scale Energy Balance to Aerodynamic Variability in Mountains and Complex Terrain. Journal of the American Water Resources Association, 49(3), 592-604. http://dx.doi.org/10.1111/jawr.12055

Balbontin-Nesvara, C., Calera-Belmonte, A., González-Piqueras, J., Campos-Rodríguez, I., López-González, M. L., Torres-Prieto, E. 2011. Vineyard Evapotranspiration Measurements in a Semiarid Environment: Eddy Covariance and Bowen Ratio Comparison. Agrociencia, 45, 87-103.

Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., Holtslag, A. A. M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL): 1.Formulation. Journal of Hydrology, 212-213(1-4), 198-212. Http://dx.doi.org/10.1016/S0022-1694(98)00253-4

Berk, A., Bernstein, L. S., Anderson, G. P., Acharya, P. K., Robertson, D. C., Chetwynd, J. H., Adler-Golden, S. M. 1998. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sensing of Environment, 65(3), 367-375. http://dx.doi.org/10.1016/S0034-4257(98)00045-5

Campos, I., Neale, C. M. U., Calera, A., Balbontín, C., González-Piqueras, J. 2010. Assessing satellitebased basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agricultural Water Management, 98(1), 45-54. http://dx.doi.org/10.1016/j.agwat.2010.07.011

Carrasco-Benavides, M., Ortega-Farías, S., Lagos, L. O., Kleissl, J., Morales, L., Poblete-Echeverría, C., Allen, R. G. 2012. Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images. Irrigation Science, 30(6), 485-497. http://dx.doi.org/10.1007/s00271-012-0379-4

Coll, C., Galve, J. M., Sánchez, J. M., Caselles, V. 2010. Validation of landsat-7/ETM+ thermalband calibration and atmospheric correction with ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing, 48(1), 547-555. http://dx.doi.org/10.1109/TGRS.2009.2024934

González-Dugo, M. P., González-Piqueras, J., Campos, I., Andreu, A., Balbontín, C., Calera, A. 2012a. Evapotranspiration monitoring in a vineyard using satellite-based thermal remote sensing. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, 8531. http://dx.doi.org/10.1117/12.974731

González-Dugo, M. P., González-Piqueras, J., Campos, I., Balbontín, C., Calera, A. 2012b. Estimation of surface energy fluxes in vineyard using field measurements of canopy and soil temperature. In C. M. U. Neale & M. H. Cosh (Eds.), Remote Sensing and Hydrology (Vol. 352, pp. 59-62). Wallingford: Int Assoc Hydrological Sciences.

González-Dugo, M. P., Mateos, L. 2008. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agricultural Water Management, 95(1), 48-58. http://dx.doi.org/10.1016/j.agwat.2007.09.001

González-Dugo, M. P., Neale, C. M. U., Mateos, L., Kustas, W. P., Prueger, J. H., Anderson, M. C. 2009. A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agricultural and Forest Meteorology, 149, 1843-1853. http://dx.doi.org/10.1016/j.agrformet.2009.06.012

Horst, T. W., Weil, J. C., 1994. Footprint estimation for scalar flux measurements in the Atmospheric surface layer. Boundary-Layer Meteorology, 59, 279-296. http://dx.doi.org/10.1007/BF00119817

INM. 2004. Guía resumida del clima de España 1971-2000. In I. N. d. Meteorología (Ed.). Madrid.

Kustas, W. P. 1990. Estimates of Evapotranspiration With a One- and Two-Layer Model of Heat Transfer Over Partial Canopy Cover. Journal of Applied Meteorology, 29(8), 704-715. http://dx.doi.org/10.1175/1520-0450(1990)029<0704:EOEWAO>2.0.CO;2

Norman, J. M., Kustas, W. P., Humes, K. S. 1995. A twosource approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3-4), 263-293. http://dx.doi.org/10.1016/0168-1923(95)02265-Y

Padilla, F. L. M., González-Dugo, M. P., Gavilán, P., Domínguez, J. 2011. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn. Hydrology and Earth System Sciences, 15, 1213-1225. http://dx.doi.org/10.5194/hess-15-1213-2011

Payero, J. O., Neale, C. M. U., Wright, J. L. 2005. Estimating Soil Heat Flux for Alfalfa and Clipped Tall Fescue Grass. Applied Engineering in Agriculture, 21(3), 1-9. http://dx.doi.org/10.13031/2013.18459

Pôças, I., Paço, T. A., Cunha, M., Andrade, J. A., Silvestre, J., Sousa, A., Allen, R. G. 2014. Satellitebased evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems Engineering, 128, 69-81. http://dx.doi.org/10.1016/j.biosystemseng.2014.06.019

Sánchez, J. M., Kustas, W. P., Caselles, V., Anderson, M. C. 2008a. Modelling surface energy fluxes over maize using a two source path model and radiometric soil and canopy temperature observations. Remote Sensing of Environment, 112(3), 1130-1143. http://dx.doi.org/10.1016/j.rse.2007.07.018

Sánchez, J. M., López-Urrea, R., Rubio, E., Caselles,V. 2011. Determining irrigation needs of sorghum from two-source energy balance and radiometric temperatures. Hydrology and Earth System Sciences Discuss., 8, 3937-3960. http://dx.doi.org/10.5194/hessd-8-3937-2011

Sánchez, J. M., López-Urrea, R., Rubio, E., González-Piqueras, J., Caselles, V. 2014. Assessing crop coefficients of sunflower and canola using twosource energy balance and thermal radiometry. Agricultural Water Management, 137, 23-29. http://dx.doi.org/10.1016/j.agwat.2014.02.002

Sánchez, J. M., Scavone, G., Caselles, V., Valor, E., Copertino, V. A., Telesca, V. 2008b. Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 351(1-2), 58-70. http://dx.doi.org/10.1016/j.jhydrol.2007.11.041

Sánchez, N., Martínez-Fernández, J., González-Piqueras, J., González-Dugo, M. P., Baroncini-Turrichia, G., Torres, E., Pérez-Gutiérrez, C. 2012. Water balance at plot scale for soil moisture estimation using vegetation parameters. Agricultural and Forest Meteorology, 166-167, 1-9. http://dx.doi.org/10.1016/j.agrformet.2012.07.005

Santos, C., Lorite, I. J., Allen, R. G., Tasumi, M. 2012. Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain. Water Resources Management, 26(11), 3267-3283. http://dx.doi.org/10.1007/s11269-012-0071-8

Tasumi, M., Allen, R. G., Trezza, R. 2008. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering, 13(2), 51-63. http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51)

Trezza, R., Allen, R. G., Tasumi, M. 2013. Estimation of actual evapotranspiration along the Middle Rio Grande of New Mexico using MODIS and landsat imagery with the METRIC model. Remote Sensing, 5(10), 5397-5423. http://dx.doi.org/10.3390/rs5105397

Valor, E., Caselles, V. 1996. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57(3), 167-184. http://dx.doi.org/10.1016/0034-4257(96)00039-9

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., Rowe, C. M. 1985. Statistics for the evaluation and comparison of models. Journal of Geophysical Research-Oceans, 90(NC5), 8995-9005. http://dx.doi.org/10.1029/JC090iC05p08995

Published

2015-06-26

Issue

Section

Research articles