Estimation of drought-induced forest decline of Scots pine in the Navarrese Pyrenees (Spain)

Paloma Ruiz-Benito

https://orcid.org/0000-0002-2781-5870

Spain

Universidad de Alcalá image/svg+xml

Departamento de Geología, Geografía y Medio Ambiente, Environmental Remote Sensing
Research Group.

Departamento de Ciencias de la Vida, Grupo de Ecología y Restauración Forestal (FORECO)

Miguel A. Zavala

Spain

Universidad de Alcalá image/svg+xml

Departamento de Ciencias de la Vida, Grupo de Ecología y Restauración Forestal (FORECO)

Inmaculada Aguado

Spain

Universidad de Alcalá image/svg+xml

Departamento de Geología, Geografía y Medio Ambiente, Environmental Remote Sensing
Research Group

Mariano García

https://orcid.org/0000-0001-6260-5791

Spain

Universidad de Alcalá image/svg+xml

Departamento de Geología, Geografía y Medio Ambiente, Environmental Remote Sensing
Research Group

|

Accepted: 2025-05-26

|

Published: 2025-07-04

DOI: https://doi.org/10.4995/raet.2025.23097
Funding Data

Downloads

Additional Files

Keywords:

dieback, drought monitoring, Sentinel-2, Pinus sylvestris

Supporting agencies:

This research was not funded

Abstract:

Identifying and predicting areas affected by drought-induced forest decline using remote sensing is key for monitoring forest-responses to drought, as well as for forest conservation and management. This is particularly important in the Mediterranean Basin, a climate change hotspot, where drought-induced forest decline has become increasingly frequent in recent decades. In this study, we focused on Pinus sylvestris forests in the Navarrese Pyrenees to quantify drought-induced forest decline, examined its relationship with climatic and hydrological variables, and assessed how the temporal evolution of greenness and wetness indices, namely Tasselled Cap Greenness (TCG) and Wetness (TCW) correlates with tree canopy damage levels. We parameterised a canopy damage model using 20 m grids from Sentinel-2 imagery and a Support Vector Machine algorithm. The model was calibrated with data from a site experiencing severe drought-induced forest decline and a healthy site. Then, we extended the prediction of tree canopy damage across the pine distribution in the same provenance region, with similar ecological conditions. The model achieved a strong fit of R2 = 76%, with an average uncertainty of CI95% = 14.6%, although it increased at higher canopy damage. The highest tree canopy damage was observed in areas of low elevations and precipitation, coupled high temperatures and evapotranspiration rates. Canopy damage showed a negative correlation with TCW and with TCG. However, during summer, areas with high tree canopy damage had the highest greenness, which could be due to background signals from the understory, surpassing the TCG levels of healthier forests.

Show more Show less

References:

AEMET. 2022. Informe climático del año 2022. https://www.aemet.es/es/serviciosclimaticos/vigilancia_clima/resumenes?w=0&datos=2

Alía-Miranda, R., García-del Barrio, J.M., Iglesias-Sauce, S., Mancha-Núñez, J.A., de Miguel-del Ángel, J., Nicolás-Peragón, J.L., Pérez-Martín, F., Sánchez-de Ron, D. 2009. Regiones de procedencia de especies forestales en España (Organismo Autónomo de Parques Nacionales, Ed.). Ministerio de Medio Ambiente y Medio Rural y Marino.

Bento, V.A., Russo, A., Vieira, I., Gouveia, C.M. 2023. Identification of forest vulnerability to droughts in the Iberian Peninsula. Theoretical and Applied Climatology, 152(1–2), 559–579. https://doi.org/10.1007/s00704-023-04427-y

Bose, A.K., Gessler, A., Büntgen, U., Rigling, A. 2024. Tamm review: Drought-induced Scots pine mortality – trends, contributing factors, and mechanisms. Forest Ecology and Management, 561. https://doi.org/10.1016/j.foreco.2024.121873

Breshears, D.D., Cobb, N.S., Rich, P.M., Price, K.P., Allen, C.D., Balice, R.G., Romme, W.H., Kastens, J.H., Floyd, M.L., Belnap, J., Anderson, J.J., Myers, O.B., Meyer, C.W., Mooney, H.A. 2005. Regional vegetation die-off in response to global-change-type drought. PNAS, 102(42), 15144–15148. https://doi.org/10.1073/pnas.0505734102

Brodribb, T.J., Powers, J., Cochard, H., Choat, B. 2020. Hanging by a thread? Forests and drought. Science, 368, 261–266. https://doi.org/10.1126/science.aat7631

Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Cantero, A., Sánchez-Salguero, R., Sánchez-Miranda, A., Granda, E., Serra-Maluquer, X., Ibáñez, R. 2018. Forest growth responses to drought at short- and long-term scales in Spain: Squeezing the stress memory from tree rings. Frontiers in Ecology and Evolution, 6(9). https://doi.org/10.3389/fevo.2018.00009

CEDEX. 2020. Evaluación de recursos hídricos en régimen natural en España (1940/41 – 2017/18). https://www.miteco.gob.es/content/dam/miteco/es/agua/temas/evaluacion-de-los-recursos-hidricos/cedex-informeerh2019_tcm30-518171.pdf

Cheng, Y., Oehmcke, S., Brandt, M., Rosenthal, L., Das, A., Vrieling, A., Saatchi, S., Wagner, F., Mugabowindekwe, M., Verbruggen, W., Beier, C., Horion, S. 2024. Scattered tree death contributes to substantial forest loss in California. Nature Communications, 15(1), 641. https://doi.org/10.1038/s41467-024-44991-z

Delacre, M., Leys, C., Mora, Y.L., Lakens, D. 2020. Taking parametric assumptions seriously: Arguments for the use of welch’s f-test instead of the classical f-test in one-way ANOVA. International Review of Social Psychology, 32(1), 13. https://doi.org/10.5334/IRSP.198

Dobbertin, M., Eilmann, B., Bleuler, P., Giuggiola, A., Graf Pannatier, E., Landolt, W., Schleppi, P., Rigling, A. 2010. Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 30(3), 346–360. https://doi.org/10.1093/treephys/tpp123

Eamus, D., Boulain, N., Cleverly, J., Breshears, D.D. 2013. Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecology and Evolution, 3(8), 2711–2729. https://doi.org/10.1002/ece3.664

Galiano, L., Martínez-Vilalta, J., Lloret, F. 2010. Drought-Induced multifactor decline of Scots Pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems, 13(7), 978–991. https://doi.org/10.1007/s10021-010-9368-8

García, M., Saatchi, S., Casas, A., Koltunov, A., Ustin, S.L., Ramirez, C., Balzter, H. 2017a. Extrapolating forest canopy fuel properties in the California Rim fire by combining airborne LiDAR and landsat OLI data. Remote Sensing, 9(4), 394. https://doi.org/10.3390/rs9040394

Garcia, M., Saatchi, S., Casas, A., Koltunov, A., Ustin, S., Ramirez, C., Garcia-Gutierrez, J., Balzter, H. 2017b. Quantifying biomass consumption and carbon release from the California Rim fire by integrating airborne LiDAR and Landsat OLI data. Journal of Geophysical Research: Biogeosciences, 122(2), 340–353. https://doi.org/10.1002/2015JG003315

García-Valdecasas Ojeda, M., Gámiz-Fortis, S.R., Romero-Jiménez, E., Rosa-Cánovas, J.J., Yeste,

P., Castro-Díez, Y., Esteban-Parra, M.J. 2021. Projected changes in the Iberian Peninsula drought characteristics. Science of the Total Environment, 757. https://doi.org/10.1016/j.scitotenv.2020.143702

Gea-Izquierdo, G., Viguera, B., Cabrera, M., Cañellas, I. 2014. Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine-oak woodlands. Forest Ecology and Management, 320, 70–82. https://doi.org/10.1016/j.foreco.2014.02.025

González-de Andrés, E., Camarero, J.J., Blanco, J.A., Imbert, J.B., Lo, Y.H., Sangüesa-Barreda, G., Castillo, F.J. 2018. Tree-to-tree competition in mixed European beech–Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. Journal of Ecology, 106(1), 59–75. https://doi.org/10.1111/1365-2745.12813

Gouveia, C.M., Trigo, R.M., Beguería, S., Vicente-Serrano, S.M. 2017. Drought impacts onvegetation activity in the Mediterranean region: An assessment using remote sensing data and multiscale drought indicators. Global and Planetary Change, 151, 15–27. https://doi.org/10.1016/j.gloplacha.2016.06.011

Hammond, W.M., Williams, A.P., Abatzoglou, J.T., Adams, H.D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D.D., Allen, C.D. 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29289-2

Hampe, A., Petit, R.J. 2005. Conserving biodiversity under climate change: The rear edge matters. Ecology Letters, 8(5), 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x

Hartmann, H., Moura, C.F., Anderegg, W.R.L., Ruehr, N.K., Salmon, Y., Allen, C.D., Arndt, S.K., Breshears, D.D., Davi, H., Galbraith, D., Ruthrof, K.X., Wunder, J., Adams, H.D., Bloemen, J., Cailleret, M., Cobb, R., Gessler, A., Grams, T.E.E., Jansen, S., … O’Brien, M. 2018. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 218(1), 15–28. https://doi.org/10.1111/nph.15048

Hawryło, P., Bednarz, B., Wężyk, P., Szostak, M. 2018. Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. European Journal of Remote Sensing, 51(1), 194–204. https://doi.org/10.1080/22797254.2017.1417745

Hopkinson, C., Chasmer, L. 2009. Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sensing of Environment, 113(1), 275–288. https://doi.org/10.1016/j.rse.2008.09.012

Hossain, M.A., Wani, S.H., Bhattacharjee, S., Burritt, D.J., Lam-Son, P.T. 2016. Drought Stress Tolerance in Plants, Volume 1. Physiology and Biochemistry (Vol. 1). Springer Nature. https://doi.org/10.1007/978-3-319-28899-4

Infante-Amate, J., Iriarte-Goñi, I., Aguilera, E. 2023. Historical changes in biomass carbon stocks in the Mediterranean (Spain, 1860–2010). Anthropocene, 44. https://doi.org/10.1016/j.ancene.2023.100416

IPCC. 2023. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez-Vallejo, J.J. Pereira, R. Pichs-Madruga, S.K. Rose, Y. Saheb, R. Sánchez Rodríguez, D. Ürge-Vorsatz, C. Xiao, N. Yassaa, J. Romero, J. Kim, E.F. Haites, Y. Jung, R. Stavins, … C. Péan, Eds.). https://doi.org/10.59327/IPCC/AR6-9789291691647

Jump, A.S., Ruiz-Benito, P., Greenwood, S., Allen, C.D., Kitzberger, T., Fensham, R., Martínez-Vilalta, J., Lloret, F. 2017. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Global Change Biology, 23(9), 3742–3757. https://doi.org/10.1111/gcb.13636

Kassambara, A. 2023. rstatix: Pipe-Friendly Framework for Basic Statistical Tests (0.7.2). CRAN.R-project.org.

Lastovicka, J., Svec, P., Paluba, D., Kobliuk, N., Svoboda, J., Hladky, R., Stych, P. 2020. Sentinel-2 data in an evaluation of the impact of the disturbances on forest vegetation. Remote Sensing, 12(1914). https://doi.org/10.3390/rs12121914

Lausch, A., Erasmi, S., King, D.J., Magdon, P., Heurich, M. 2016. Understanding forest health with remote sensing-Part I-A review of spectral traits, processes and remote-sensing characteristics. In Remote Sensing (Vol. 8, Issue 12). MDPI AG. https://doi.org/10.3390/rs8121029

Le, T.S., Harper, R., Dell, B. 2023. Application of remote sensing in detecting and monitoring water stress in forests. Remote Sensing, 15(13). https://doi.org/10.3390/rs15133360

Lloret, F., Siscart, D., Dalmases, C. 2004. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Global Change Biology, 10(12), 2092–2099. https://doi.org/10.1111/j.1365-2486.2004.00870.x

Danson, F.M., Curran, P.J. 1993. Factors Affecting the Remotely Sensed Response of Coniferous Forest Plantations. Remote Sensing of Environment, 43, 55–65. https://doi.org/10.1016/0034-4257(93)90064-5

Martínez-Vilalta, J., Piñol, J. 2002. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. Forest Ecology and Management, 1–3, 247–256. https://doi.org/10.1016/S0378-1127(01)00495-9

McRoberts, R.E., Magnussen, S., Tomppo, E.O., Chirici, G. 2011. Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data. Remote Sensing of Environment, 115(12), 3165–3174. https://doi.org/10.1016/j.rse.2011.07.002

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F. 2024. e1071: Misc Functions of the Department of Statistics, Probability Theory Group.

MITECO. 2011. Mapa forestal de España 1:25000. Comunidad Foral de Navarra. In Ministerio para la Transición Ecológica y el Reto Demográfico.

MITECO. (2023a). Mapa Forestal de España 1:25000. Aragón. In Ministerio para la Transición Ecológica y el Reto Demográfico.

MITECO. (2023b). Resolución de 17 de enero de 2023, de la Dirección General de Biodiversidad, Bosques y Desertificación, por la que se modifica el Catálogo Nacional de las Regiones de Procedencia para las especies forestales Abies pinsapo y Pinus sylvestris. https://www.boe.es

MITECO. (2023c). Trabajos de adquisición de información sobre el estado de los bosques españoles en base a la Red Integrada de Seguimiento del Estado de los Bosques: Red de Nivel I. Memoria Anual. Informe de resultados: Comunidad Foral de Navarra. Año 2023. https://www.miteco.gob.es/content/dam/miteco/es/biodiversidad/temas/inventarios-nacionales/INFORME%20DE%20RESULTADOS%20COMUNIDAD%20FORAL%20DE%20NAVARRA%202023.pdf

Moreno-de-las-Heras, M., Bochet, E., Vicente-Serrano, S.M., Espigares, T., Molina, M.J., Monleón, V., Nicolau, J.M., Tormo, J., García-Fayos, P. 2023. Drought conditions, aridity and forest structure control the responses of Iberian holm oak woodlands to extreme droughts: A large-scale remote-sensing exploration in eastern Spain. Science of the Total Environment, 901. https://doi.org/10.1016/j.scitotenv.2023.165887

Moreno-Fernández, D., Viana-Soto, A., Camarero, J.J., Zavala, M.A., Tijerín, J., García, M. 2021. Using spectral indices as early warning signals of forest dieback: The case of drought-prone Pinus pinaster forests. Science of the Total Environment, 793. https://doi.org/10.1016/j.scitotenv.2021.148578

Mountrakis, G., Im, J., Ogole, C. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

Pourshamsi, M., Garcia, M., Lavalle, M., Balzter, H. 2018. A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3453–3463. https://doi.org/10.1109/JSTARS.2018.2868119

Querejeta, J.I., Estrada-Medina, H., Allen, M.F., Jiménez-Osornio, J.J. 2007. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia, 152(1), 26–36. https://doi.org/10.1007/s00442-006-0629-3

Rebollo, P., Moreno-Fernández, D., Cruz-Alonso, V., Gazol, A., Rodríguez-Rey, M., Astigarraga, J., Zavala, M.A., Gómez-Aparicio, L., Andivia, E., Miguel-Romero, S., Ruiz-Benito, P. 2024. Recent increase in tree damage and mortality and their spatial dependence on drought intensity in Mediterranean forests. Landscape Ecology, 39(3).https://doi.org/10.1007/s10980-024-01837-9

Rigling, A., Bigler, C., Eilmann, B., Feldmeyer-Christe, E., Gimmi, U., Ginzler, C., Graf, U., Mayer, P., Vacchiano, G., Weber, P., Wohlgemuth, T., Zweifel, R., Dobbertin, M. 2013. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology, 19(1), 229–240. https://doi.org/10.1111/gcb.12038

Rodes-Blanco, M., Ruiz-Benito, P., Zavala, M.A., Aguado, I., García, M. [under review]. Unveiling the role of spectral resolution, spatial resolution and forest structure in detecting forest decline in Iberian Scots pine forests using satellite imagery.

Ruiz-Benito, P., Ratcliffe, S., Zavala, M.A., Martínez-Vilalta, J., Vilà-Cabrera, A., Lloret, F., Madrigal-González, J., Wirth, C., Greenwood, S., Kändler, G., Lehtonen, A., Kattge, J., Dahlgren, J., Jump, A.S. 2017. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biology, 23(10), 4162–4176. https://doi.org/10.1111/gcb.13728

Ruiz-Benito, P., Vacchiano, G., Lines, E.R., Reyer, C.P. O., Ratcliffe, S., Morin, X., Hartig, F., Mäkelä, A., Yousefpour, R., Chaves, J.E., Palacios-Orueta, A., Benito-Garzón, M., Morales-Molino, C., Camarero, J.J., Jump, A.S., Kattge, J., Lehtonen, A., Ibrom, A., Owen, H.J. F., Zavala, M.A. 2020. Available and missing data to model impact of climate change on European forests. Ecological Modelling, 416(October 2019), 108870. https://doi.org/10.1016/j.ecolmodel.2019.108870

Sánchez-Salguero, R., Camarero, J.J., Hevia, A., Madrigal-González, J., Linares, J.C., Ballesteros-Canovas, J.A., Sánchez-Miranda, A., Alfaro-Sánchez, R., Sangüesa-Barreda, G., Galván, J.D., Gutiérrez, E., Génova, M., Rigling, A. 2015. What drives growth of Scots pine in continental Mediterranean climates: Drought, low temperatures or both? Agricultural and Forest Meteorology, 206, 151–162. https://doi.org/10.1016/j.agrformet.2015.03.004

Senf, C., Esquivel-Muelbert, A., Pugh, T.A. M., Anderegg, W.R. L., Anderson-Teixeira, K.J., Arellano, G., Beloiu Schwenke, M., Bentz, B.J., Boehmer, H.J., Bond-Lamberty, B., Bordin, K.M., Brearley, F.Q., Bussotti, F., Cailleret, M., Camarero, J.J., Chirici, G., Costa, F.R. C., Dalagnol, R., Davi, H., … van der Maaten-Theunissen, M. 2025.Towards a global understanding of tree mortality. New Phytologist. https://doi.org/10.1111/nph.20407

Shavnin, S.A., Yusupov, I.A., Marina, N.V., Montile, A.A., Golikov, D.Y. 2021. Seasonal Changes in Chlorophyll and Carotenoid Content in Needles of Scots Pines (Pinus sylvestris L.) Exposed to the Thermal Field of a Gas Flare. Russian Journal of Plant Physiology, 68(3), 526–535. https://doi.org/10.1134/S1021443721020187

Shi, T., Xu, H. 2019. Derivation of Tasseled Cap Transformation Coefficients for Sentinel-2 MSI At-Sensor Reflectance Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(10), 4038–4048. https://doi.org/10.1109/JSTARS.2019.2938388

The R Core Team. 2023. R.

Torres, P., Rodes-Blanco, M., Viana-Soto, A., Nieto, H., García, M. 2021. The role of remote sensing for the assessment and monitoring of forest health: A systematic evidence synthesis. Forests, 12(8). https://doi.org/10.3390/f12081134

Varo-Martínez, M.Á., Navarro-Cerrillo, R.M. 2021. Stand delineation of Pinus sylvestris L. plantations suffering decline processes based on biophysical tree crown variables: A necessary tool for adaptive silviculture. Remote Sensing, 13(3), 436. https://doi.org/10.3390/rs13030436

Viana-Soto, A., Aguado, I., Salas, J., García, M. 2020. Identifying post-fire recovery trajectories and driving factors using landsat time series in fire-prone mediterranean pine forests. Remote Sensing, 12(9). https://doi.org/10.3390/RS12091499

Vincke, C., Thiry, Y. 2008. Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: Evidences from continuous evapotranspiration and water table monitoring. Agricultural and Forest Meteorology, 148(10), 1419–1432. https://doi.org/10.1016/j.agrformet.2008.04.009

Wegler, M., Kuenzer, C. 2024. Potential of earth observation to assess the impact of climate change and extreme weather events in temperate forests—A review. Remote Sensing, 16(12), 2224. https://doi.org/10.3390/rs16122224

Show more Show less