Mapping of crop calendar events by object-based analysis of MODIS and ASTER images

Authors

  • A.I. De Castro CREC-University of Florida, United States
  • R.E. Plant University of California, Davis
  • J. Six University of California, Davis
  • J.M. Peña Instituto de Agricultura Sostenible, IAS-CSIC

DOI:

https://doi.org/10.4995/raet.2014.2307

Keywords:

Irrigated crops, Fitting curve, NDVI time-series, TIMESAT, eCognition developer

Abstract

A method to generate crop calendar and phenology-related maps at a parcel level of four major irrigated crops (rice, maize, sunflower and tomato) is shown. The method combines images from the ASTER and MODIS sensors in an object-based image analysis framework, as well as testing of three different fitting curves by using the TIMESAT software. Averaged estimation of calendar dates were 85%, from 92% in the estimation of emergence and harvest dates in rice to 69% in the case of harvest date in tomato.

Downloads

Download data is not yet available.

Author Biographies

A.I. De Castro, CREC-University of Florida, United States

Department of Agricultural and Biological Engineering, CREC-University of Florida, Lake Alfred, FL 33850, United States

R.E. Plant, University of California, Davis

Department of Plant Sciences, Professor

J. Six, University of California, Davis

Department of Plant Sciences, Senior Researcher

J.M. Peña, Instituto de Agricultura Sostenible, IAS-CSIC

Departamento de Protección de Cultivos, Investigador

References

Baatz, M., Schäpe, A., 2000. Angewandte Geographische Informationsverarbeitung XII (Vol. XII, pp. 12-23). Presentado en Beiträge zum AGIT Symposium, Salzburg (Austria): J. Strbl (Ed.). Karlruhe, Herbert Wichmann Verlag.

Beck, P. S. A., Atzberger, C., Høgda, K. A., Johansen, B., Skidmore, A. K., 2006. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of Environment, 100, 321-334.

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16.

Eklundh, L., Jönsson, P., 2012. TIMESAT 3.1 - Software Manual. In Lund University web page. http://www.nateko.lu.se/timesat/docs/timesat3_1_1_SoftwareManual.pdf

Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Madouka, E., Myneni, R., Tan, B., Nightingale, J., 2008. An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series. IEEE Geoscience and Remote Sensing Letters, 5(1), 60–64.

IFA/FAO, 2001. Global Estimates of Gaseous Emissions of NH3, NO, and N2O from Agricultural Land. In International Fertilizer Industry Association and the Food and Agriculture Organization of the United Nations. Último acceso: 8 de Marzo, 2013, de http://www.fao.org/docrep/004/y2780e/y2780e00.htm

Jönsson, P., Eklundh, L., 2004. TIMESAT-a program for analyzing time-series of satellite sensor data. Computers and Geosciences, 30(8), 833-845.

Peña-Barragán, J. M., López-Granados, F., García-Torres, L., Jurado-Expósito, M., Sánchez-de la Orden, M., García-Ferrer, A., 2008. Discriminating cropping systems and agro-environmental measures by remote sensing. Agronomy for Sustainable Development, 28(2), 355–362.

Peña-Barragán, J. M., Ngugi, M. K., Plant, R. E., Six, J., 2011. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 115(6), 1301-1316.

Rojas, O., Vrieling, A., Rembold, F., 2011. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sensing of Environment, 115(2), 343–352.

Tan, B., Morisette, J. T., Wolfe, R. E., Gao, F., Ederer, G. A., Nightingale, J., Pedelty, J. A., 2011. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 361-371.

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., Reed, B. C., Huete, A., 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3), 471–475.

Zhong, L., Gong, P., Biging, G. S. 2014. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment, 140, 1-13.

Wang, J., Rich, P. M., Price, K. P., Kettle, W. D., 2004. Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing, 25(16), 3127-3138.

Thenkabail, P. S., Knox, J. W., Ozdogan, M., Gumma, M. K., Congalton, R. G., Wu, Z., Miseli, C., Finkral, A., Marshall, M., Mariotto, I., You, S., Giri, C.P., Nagler, P. L., 2012. Assessing future risks to agricultural productivity, water resources and food security-how can remote sensing help? Photogrammetric Engineering and Remote Sensing, 78(8), 773-782.

Yolo County Agriculture Department, 2006. In Yolo County : Agricultural Crop Report- 2006. Último acceso: 8 de Marzo, 2014, de http://www.yolocounty.org/home/showdocument?id=4806

Published

2014-06-09

Issue

Section

Research articles