Fine-scale carbon stocks mapping in the mangrove forests of Tumaco, Colombia using machine learning and remote sensing approaches

|

Accepted: 2025-04-03

|

Published: 2025-05-05

DOI: https://doi.org/10.4995/raet.2025.23035
Funding Data

Downloads

Keywords:

Biomass, Carbon stocks, Machine learning, Mangrove, Worldview-2

Supporting agencies:

This research was not funded

Abstract:

Mangroves play a critical role in mitigating climate change, sequestering up to five times more carbon than other forests. Accurate assessment of their carbon stocks is crucial for effective planning and management in climate change strategies. This study presents an innovative approach that integrates remote sensing with field data, utilizing high-resolution imagery and evaluating two machine learning algorithms: Random Forest and Support Vector Regression. Mangrove area was mapped using supervised classification, and both aboveground and belowground biomass, along with the carbon stored in these compartments, were quantified. The classification achieved an accuracy of 87%, and mean values of 192.50±102.78 Mg/ha for aboveground biomass, 79.95±56.85 Mg/ha for belowground biomass, and 127.43±73.49 CMg/ha for stored carbon. The Random Forest model performed best, with an RMSE of 140.68 and an R² of 0.78, surpassing global models. Additionally, spectral indices significantly enhanced the model’s ability to predict aboveground biomass.

Show more Show less

References:

Ahmad, A., Gilani, H., and Ahmad, S.R. (2021). Forest aboveground biomass estimation and mapping through high-resolution optical satellite imagery-a literature review. Forests, 12(7), 914. https://doi.org/10.3390/f12070914

Aldrich, R.C., Bailey, W.F., and Heller R.C. (1959) Large Scale 70 mm. Color Photography Techniques and Equipment and Their Application to a Forest Sampling Problem. Photogrammetric Engineering, 25, 747-754

Anand, A., Pandey P.C., Petropoulos, G.P., Pavlides, A., Srivastava, P.K., Sharma, J.K., Malhi, R.K.M. (2020) Use of hyperion for mangrove forest carbon stock assessment in bhitarkanika forest reserve: A contribution towards blue carbon initiative. Remote Sensing, 12(4). https://doi.org/10.3390/rs12040597

Ávila-Acosta, C.R., Domínguez-Domínguez, M., Vázquez-Navarrete, C.J., Acosta-Pech, R.G., Martínez-Zurimendi, P. (2024). Aboveground biomass and carbon storage in mangrove forests in southeastern Mexico. Resources, 13(3), 41. https://doi.org/10.3390/resources13030041

Awad, M., Khanna, R. (2015) Efficient Learning Machines. Theories, Concepts, and Applications for Engineers and System Designers. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4302-5990-9

Basith, A., Prastyani, R. (2020). Evaluating ACOMP, FLAASH AND QUAC on WORLDVIEW-3 for Satellite Derived Bathymetry (SDB) in shallow water. International Journal of Remote Sensing, 46(3), 151-158. https://doi.org/10.3846/gac.2020.11426

Bindu, G., Rajan, P., Jishnu, E.S., Ajith, Joseph, K. (2020) Carbon stock assessment of mangroves using remote sensing and geographic information system. Egyptian Journal of Remote Sensing and Space Science, 23(1), 1-9. https://doi.org/10.1016/j.ejrs.2018.04.006

Bishop, C. (2008) Pattern Recognition and Machine Learning. Springer Verlag. http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop - Pattern Recognition And Machine Learning - Springer 2006.pdf

Bolar, K. (2019) STAT V.0.1.0 (0.1.0). https://cran.r-project.org/web/packages/STAT/index.html

Bolivar, J.M., Gutierrez-Velez, V.H., Sierra, C.A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145-155. https://doi.org/10.1016/j.rsma.2017.12.011

Breiman, L. (2001) Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324

Bunting, P. (2020). Class Accuracy (V1.0.0). https://github.com/remotesensinginfo/classaccuracy/releases/tag/qgis3_v1.0.0

Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R.M., Thomas, N., Tadono, T., Worthington, T.A., Spalding, M., Murray, N.J., Rebelo, L.M. (2022) Global Mangrove Extent Change 1996-2020: Global Mangrove Watch Version 3.0. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153657

Castellanos-Galindo, G.A., Kluger, L.C., Camargo, M.A., Cantera, J., Mancera-Pineda, J.E., Blanco-Libreros, J.F., Wolff, M. (2021) Mangrove research in Colombia: Temporal trends, geographical coverage and research gaps. Estuarine, Coastal and Shelf Science, 248(October 2019). https://doi.org/10.1016/j.ecss.2020.106799

Congalton, R.G., Green, K. (2008) Assessing the accuracy of remotely sensed data: Principles and practices, second edition. In Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Second Edition. https://doi.org/10.1201/9781420055139

Dimar (2020) Compilación Oceanográfica de la Cuenca Pacífica Colombiana II (Vol. 9). Editorial Dimar.

Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M. (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293-297. https://doi.org/10.1038/ngeo1123

Du, P., Bai, X., Tan, K., et al. (2020). Advances of four machine learning methods for spatial data handling: A review. Journal of Geovisualization and Spatial Analysis, 4, 13. https://doi.org/10.1007/s41651-020-00048-5

Gao, B.C. (1996) NDWI - A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. REMOTE SENS. ENVIRON, 7212, 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3

Gao, Y., Yu, G., Yang, T., Jia, Y., He, N., Zhuang, J. (2016). New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China. Earth-Science Reviews, 159, 36-46. https://doi.org/10.1016/j.earscirev.2016.05.003

Gonzalez, R.C., Woods, R.E. (2008) Digital Image Processing Third Edition Library of Congress Cataloging-in-Publication Data on File.

Google, Maxar Technologies (2021) Maps Data. https://earth.google.com/web/

Gross, J., Flores, E.E., Schwendenmann, L. (2014). Stand structure and aboveground biomass of a Pelliciera rhizophorae mangrove forest, gulf of Montijo Ramsar Site, Pacific Coast, Panama. Wetlands, 34(1), 55-65. https://doi.org/10.1007/s13157-013-0482-1

Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Datta Majumdar, S., Samanta, S., Mitra, D., Samal, R.N., Pattnaik, A.K., Hazra, S. (2018) An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129-1139. https://doi.org/10.1016/j.mex.2018.09.011

Hickey, S.M., Callow, N.J., Phinn, S., Lovelock, C.E., Duarte, C.M. (2018). Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomasscarbon approach. Estuarine, Coastal and Shelf Science, 200, 194-201. https://doi.org/10.1016/j.ecss.2017.11.004

Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., Telszewski, M. (2014) Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA., 1-180. www.ioc.unesco.org

Hu, T., Zhang, Y.Y., Su, Y., Zheng, Y., Lin, G., Guo, Q. (2020) Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sensing 2020, Vol. 12, Page 1690, 12(10), 1690. https://doi.org/10.3390/rs12101690

Huete, A.R. (1988) A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X

Hutchison, J., Manica, A., Swetnam, R., Balmford, A., Spalding M (2014) Predicting global patterns in mangrove forest biomass. Conservation Letters, 7(3), 233-240. https://doi.org/10.1111/conl.12060

INVEMAR. (2023). Sistema de Información Ambiental Marina de Colombia - SIAM. Cobertura de manglar nacional del año 2020 a escala 1:25000. Conjunto de datos del Sistema de Información para la Gestión de los Manglares de Colombia (SIGMA). INVEMAR.

Jiang, Z., Huete, A.R., Didan, K., Miura, T. (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833-3845. https://doi.org/10.1016/j.rse.2008.06.006

Kauffman, J.B., Donato, D.C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper 86. CIFOR, Bogor, Indonesia. Working Paper 86, CIFOR, January, 50.

Kershaw, J.A., Ducey, M.J., Beers, T. W., Husch, B. (2016) Sampling Designs in Forest Inventories. In Forest Mensuration (pp. 305-360). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118902028.ch10

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper,T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T. (2023) Caret V.6.0-94 (6.0-94). https://cran.r-project.org/web/packages/caret/index.html

Kupidura, P., Kępa, A., Krawczyk, P. (2024). Comparative analysis of the performance of selected machine learning algorithms depending on the size of the training sample. Reports on Geodesy and Geoinformatics, 118(1). https://doi.org/10.2478/rgg-2024-0015

Leal, M., Spalding, M.D. (Eds.). (2024). The state of the world's mangroves 2024. Global Mangrove Alliance. https://doi.org/10.5479/10088/119867

Lozano-Arias, L. (2023). Un nuevo modelo para la estimación de la biomasa viva y el carbono almacenado en los bosques de manglar usando sensoramiento remoto y aprendizaje de máquina: Caso de estudio Tumaco-Nariño. Repositorio Institucional UNAL. https://repositorio.unal.edu.co/handle/unal/86135

Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297-1328. https://doi.org/10.1080/01431160500486732

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., Moran, E. (2016) A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. In International Journal of Digital Earth (Vol. 9, Issue 1, pp. 63-105). https://doi.org/10.1080/17538947.2014.990526

MAXAR Technologies (2020, July) Multispectral reference guide. https://resources.maxar.com/white-papers/multispectral-reference-guide

Microsoft Bing, Maxar Technologies. (2022). Bing Maps. https://www.bing.com/maps?cc=es

Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being : Current State and Trends, Volume 1 (R. Hassan, R. Scholes, & N. Ash (eds.)). Island Press. http://www.millenniumassessment.org//en/products.global.condition.aspx

Monsalve, A., & Ramírez, G. (2015). Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del Consejo comunitario La Plata, Bahía Málaga, Valle del Cauca (Vol. 57, Issue 4).

Mukhtar, E., Raynaldo, A., & Novarino, W. (2021). Carbon stock mapping using mangrove discrimination indices in mandeh bay, west sumatra. AACL Bioflux, 14(1), 430-440.

Murillo-Sandoval, P.J., Fatoyinbo, L., Simard, M. (2022). Mangroves cover change trajectories 1984-2020: The gradual decrease of mangroves in Colombia. Frontiers in Marine Science, 9, 892946. https://doi.org/10.3389/fmars.2022.892946

Mutanga, O., Adam, E., Cho, M. A. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399-406. https://doi.org/10.1016/j.jag.2012.03.012

Nguyen, H. H., Nghia, N. H., Nguyen, H. T. T., Le, A. T., Tran, L. T. N., Duong, L. V. K., Bohm, S., & Furniss, M. J. (2020). Classification Methods for Mapping Mangrove Extents and Drivers of Change in Thanh Hoa Province, Vietnam during 2005-2018. Forest and Society, 4(1), 225-242. https://doi.org/10.24259/fs.v4i1.9295

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A. (2014) Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). Elsevier Inc. https://doi.org/10.1016/j.rse.2014.02.015

Rondeaux, G., Steven, M., Baret, F. (1996) Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95-107. https://doi.org/10.1016/0034-4257(95)00186-7

Selvaraj, J.J., Gallego-Pérez, B.E. (2023) Estimating mangrove aboveground biomass in the Colombian Pacific coast: A multisensor and machine learning approach. Heliyon, 9, 2405-8440. https://doi.org/10.1016/j.heliyon.2023.e20745

Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., Castañeda-Moya, E., Thomas, N., Van der Stocken, T. (2019) Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40-45. https://doi.org/10.1038/s41561-018-0279-1

Saldarriaga, J.G., Duque, A.J., Álvarez, E. (2011) Modelos para la estimación de la biomasa y el carbono en diferentes tipos de bosque del choco biogeográfico, Colombia: manglar, guandal y bosques de colina localizados en los Consejos Comunitarios de Bajo Mira y Concosta a partir de los datos colectados e. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Medio Ambiente, Vivienda y Desarrollo Territorial (MAVDT), Fundación Natura, Fundación Gordon y Betty Moore - USAID.

Spalding, M.D., Leal, M. (Eds.). (2021). The state of the world's mangroves 2021. Global Mangrove Alliance.

Perea-Ardila, M. A., Oviedo-Barrero, F., Leal-Villamil, J. (2019) Cartografía de bosques de manglar mediante imágenes de sensores remotos: estudio de caso Buenaventura, Colombia. Revista de Teledetección, 53, 73. https://doi.org/10.4995/raet.2019.11684

Perea Ardila, M. A., Murillo Sandoval, P. J. (2022) La ganancia de manglar y sus implicaciones en el reservorio de Carbono del Parque Nacional Natural Sanquianga en Colombia. Ecosistemas, 31(3), 2386. https://doi.org/10.7818/ECOS.2386

Pham, T. D., Xia, J., Thang Ha, N., Tien Bui, D., Nhu Le, N., Tekeuchi, W. (2019) A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, sea grasses and salt marshes during 2010-2018. Sensors (Switzerland), 19(8). https://doi.org/10.3390/s19081933

Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., Friess, D. A. (2019b) Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing, 11(3), 1-24. https://doi.org/10.3390/rs11030230

Qiu, P., Wang, D., Zou, X., Yang, X., Xie, G., Xu, S., Zhong, Z. (2019) Finer Resolution Estimation and Mapping of Mangrove Biomass Using UAV LiDAR and WorldView-2 Data. Forest, 10(817). https://doi.org/10.3390/f10100871

Tavera, H.A. (2010). Documento síntesis: Caracterización, Diagnóstico y Zonificación de los Manglares en el Departamento de Nariño. Corporación Autónoma Regional de Nariño (CORPONARIÑO).

Vu, T.D., Takeuchi, W., Van, N.A. (2014). Carbon Stock Calculating and Forest Change Assessment Toward REDD+ Activities for The Mangrove Forest in Vietnam. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 12(ists29), Pn_23-Pn_31. https://doi.org/10.2322/tastj.12.Pn_23

Wang, L., Jia, M., Yin, D., Tian J (2019) A review of remote sensing for mangrove forests: 1956-2018. Remote Sensing of Environment, 231(May). https://doi.org/10.1016/j.rse.2019.111223

Wicaksono, P., Danoedoro, P., Hartono, H., Nehren, U., Ribbe, L. (2011) Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, 8174, 81741B. https://doi.org/10.1117/12.897926

Zhu, Y., Liu, K., Liu, L., Myint, S. W., Wang, S., Cao, J., Wu, Z. (2020) Estimating and Mapping Mangrove Biomass Dynamic Change Using WorldView-2 Images and Digital Surface Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2123-2134. https://doi.org/10.1109/JSTARS.2020.2989500

Zhu, Y., Liu, K., Liu, L., Myint, S. W., Wang, S., Liu, H., He, Z. (2017) Exploring the potential of world view-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sensing, 9(10). https://doi.org/10.3390/rs9101060

Zhu, Y., Liu, K., Liu, L., Wang, S., Liu, H. (2015) Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images. Remote Sensing 2015, Vol. 7, Pages 12192-12214, 7(9), 12192-12214. https://doi.org/10.3390/rs70912192

Show more Show less