FLEX (Fluorescence Explorer) mission: Observation fluorescence as a new remote sensing technique to study the global terrestrial vegetation state

J. Moreno, L. Alonso, J. Delegido, J.P. Rivera, A. Ruiz-Verdú, N. Sabater, C. Tenjo, J. Verrelst, J. Vicent

Abstract

FLEX (Fluorescence EXplorer) is a candidate for the 8th ESA’s Earth Explorer mission. Is the first space mission specifically designed for the estimation of vegetation fluorescence on a global scale. The mission is proposed to fly in tandem with the future ESA´s Sentinel-3 satellite. It is foreseen that the information obtained by Sentinel-3 will be supplemented with that provided by FLORIS (Fluorescence Imaging Spectrometer) onboard FLEX. FLORIS will measure the radiance between 500 and 800 nm with a bandwidth between 0.1 nm and 2 nm, providing images with a 150 km swath and 300 m pixel size. This information will allow a detailed monitoring of vegetation dynamics, by improving the methods for the estimation of classical biophysical parameters, and by introducing a new one: fluorescence. This paper presents the current status of FLEX mission in A/B1 phase and the different ongoing studies, campaigns and projects carried out in support of the FLEX mission.


Keywords

FLEX; Fluorescence; Biophysical parameters; Sentinel-3

Full Text:

PDF

References

ESA, 2013. ESA´s Sentinel satellites. Último acceso: 13 de Marzo, 2014, de http://www.esa.int/Our_Activities/Observing_the_Earth/GMES/Sentinel-3

ESA, 2014. 5th International Workshop on Remote Sensing of Vegetation Fluorescence. Último acceso: 13 de Marzo, 2014, de http://www.congrexprojects.com/2014-events/14c04/introduction

Corp, L.A., Mcmurtrey, J.E., Middleton, E.M., Mulchi C.L., Chappelle E.W., Daughtry C.S.T., 2003. Fluorescence sensing systems: In vivo detection of biophysical variations in field corn due to nitrogen supply. Remote Sensing of Environment, 86(4), 470–479. doi:10.1016/S0034-4257(03)00125-1

Daumard, F., Champagne, S., Fournier, A., Goulas, Y., Ounis, A., Hanocq, J.-F., Moya, I., 2010. A Field Platform for Continuous Measurement of Canopy Fluorescence. IEEE Transactions on Geoscience and Remote Sensing, 48 (9), 3358–3368. doi:10.1109/TGRS.2010.2046420

Dobrowski, S. Z., Pushnik, J. C., Zarco-Tejada, P. J., Ustin, S. L., 2005. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sensing of Environment, 97(3), 403–414. doi:10.1016/j.rse.2005.05.006

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E. Yokota, T., 2011. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38(17), L17706. doi:10.1029/2011GL048738

HyFLEX, 2013. ESA´s campaigns at work. Último acceso: 13 de Marzo, 2014, de http://blogs.esa.int/campaignearth/2012/09/06/hyflex-above-the-forest/

Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., Middleton, E. M., 2011. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences, 8(3), 637–651. doi:10.5194/bg-8-637-2011

Kuze, A., Suto, H., Nakajima, M., Hamazaki, T., 2009. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics, 48(35), 6716–6733. doi:10.1364/AO.48.006716

Maxwell, K., Johnson, G. N., 2000. Chlorophyll fluorescence–a practical guide. Journal of Experimental Botany, 51(345), 659–668. doi:10.1093/jexbot/51.345.659

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 2009. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113(10), 2037–2051. doi:10.1016/j.rse.2009.05.003

Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., 2010. Performance of Spectral Fitting Methods for vegetation fluorescence. Remote Sensing of Environment, 114, 363–374.

PARCS, 2013. FLEX/S3 Tandem Mission Performance Analysis and Requirements Consolidation Study. Último acceso: 13 de Marzo, 2014, de http://ipl.uv.es/flex-parcs/index.php/news-a-press-1 doi:10.1016/j.rse.2009.09.010

Plascyk, J., 1975. The MKII Fraunhofer Line Discriminator. (FLD-II) for airborne and orbital remote sensing of solar stimulated luminescence. Optical Engineering, 14, 339–346. doi:10.1117/12.7971842

Plascyk, J., Grabriel, F., 1975. The Fraunhofer Line Discriminator MKII - an airbone instrument for precise and standarized ecological luminescence measurements. IEEE Transactions on Instrumentation and Measurement, 24, 306–313. doi:10.1109/TIM.1975.4314448

Rascher, U., Agati, G., Alonso, L., Cecchi, G., Champagne, S., Colombo, R., Zaldei, A., 2009. CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. Biogeosciences, 6(7), 1181–1198. doi:10.5194/bg-6-1181-2009

Van Der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated model of soil - canopy spectral radiances, photosyntesis, fluorescence, temperature and energy balance. Biogeosciences, 12, 3109-3129. doi:10.5194/bg-6-3109-2009

Abstract Views

4406
Metrics Loading ...

Metrics powered by PLOS ALM




 

This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet