Application of airborne LiDA R data in viewshed analysis


  • I. Pellicer Universitat Politècnica de València
  • J. Estornell Universitat Politècnica de València
  • J. Martí Universitat Politècnica de València



Digital surface model (DSM), Digital terrain model (DTM), Viewshed analysis, Landscaping, LiDAR


The environmental impact assessment and landscape analysis of any work or activity over the territory requires a study of the visual impact what can be done from the application of viewshed analysis. The accuracy of these results depends largely on the parameters for calculating them, accuracy and spatial resolution of initial elevation data and digital models derived. In this study viewshed analysis in 4 areas of the town of Gandia with different characteristics (urban, forest, beach, mixed) were analyzed from 4 types of geographic information: a) Digital Elevation Model (DEM) and b) Digital Surface Model (DSM) derived from LiDAR data with density of 1 point/m2; c) DTM from a photogrammetric flight with a pixel size of 5×5 m; d) Overlay cadastral cartography with the previous DTM. For the validation of the results, 120 checking points were used to calculate the overall accuracy and kappa index. The results showed a high overall accuracy for the viewsheds calculated from the DSM derived from LiDAR data being the overall accuracy and index kappa 90% and 0.80, respectively. The conclusions drawn from this study indicated that the use of this source of information showed a good performance for the generation of viewshed analysis.


Download data is not yet available.

Author Biographies

I. Pellicer, Universitat Politècnica de València

Escuela Politécnica Superior de Gandia

J. Estornell, Universitat Politècnica de València

Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría

J. Martí, Universitat Politècnica de València

Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría


Bishop, I. D., Wherrett, J. R., Miller D. R., 2000. Using image depth variables as predictors of visual quality. Environment and Planning B: Planning and Design, 27, 865- 875. doi:10.1068/b26101

Bishop, I.D., 2003. Assessment of visual qualities, impacts, and behaviors, in the landscape, by using measures of visibility. Environment and Planning B: Planning and Design, 30, 677- 688. doi:10.1068/b12956

Bishop, I. D., Miller, D. R., 2007. Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables. Renewable Energy, 32, 814-831. doi:10.1016/j.renene.2006.03.009

Cavaillhès, J., Brossard, T., Foltête, J. C., Hilal, M., Joly, D., Tourneux, F. P., Tritz, C., Wavresky, P., 2009. GIS-Based Hedonic Pricing of Landscape. Environmental and Resource Economics, 44, 571-590. doi:10.1007/s10640-009-9302-8

Cohen J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104

Congalton, R.G., Oderwald, R.G., Mead, R.A., 1983. Assessing Landsat classification accuracy using discrete multivariate statistical techniques, Photogrammetric Engineering and Remote Sensing, 49(12), 1671-1678.

Dean D. J., 1997. Improving the accuracy of forest viewsheds using triangulated networks and the visual permeability method. Canadian Journal of Forest Research, 27, 969-977 doi:10.1139/x97-062

Decreto 120/2006, de 11 de agosto, del Consell, por el que se aprueba el Reglamento de Paisaje de la Comunitat Valenciana. DOGV de 16 de Agosto de 2006.

Estornell, J., Ruiz, L. A., Velazquez-Marti, B., Hermosilla, T., 2011. Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4, 521-538. doi:10.1080/17538947.2010.533201

Fisher, P. F., 1991. First experiments in viewshed uncertainty: The accuracy of the viewshed area. Photogrammetric Engineering and Remote Sensing, 57, 1321–1327

Krist, Jr., F. J., Brown, D. G., 1995. GIS modelling of Paleo-Indian period Caribou Migrations and viewsheds in Northeastern Lower Michigan. Photogrammetric Engineering and Remote Sensing 60, 1129-1337.

Hamilton, S. E., Morgan, A., 2010. Integrating LiDAR, GIS and hedonic price modeling to measure amenity values in urban beach residential property markets. Computers, Environment and Urban Systems, 34, 133-41.

Lake, M. W., Woodman, P. E., Mithen, S. J., 1998. Tailoring GIS Software for Archaeological Applications: An Example Concerning Viewshed. Analysis Journal of Archaeological Science, 25, 27–38. doi:10.1006/jasc.1997.0197

Maloy, M. A., Dean D. J., 2001. An accuracy assessment of various GIS-based viewshed delineation techniques. Photogrammetric Engineering and Remote Sensing, 67, 1293-1298.

Mouflis, G. D., Gitas, I. Z., Iliadou, S., Mitri, G. H., 2008. Assessment of the visual impact of marble quarry expansion (1984–2000) on the landscape of Thasos island, NE Greece. Landscape and Urban Planning, 86(1), 92-102. doi:10.1016/j.landurbplan.2007.12.009

Muñoz, A., 2008. La política del paisaje en la Comunitat Valenciana. Cuadernos Geográficos, 43, 99-121.

Ogburn D. E., 2006. Assessing the level of visibility of cultural objects in past landscapes. Journal of Archaeological Science, 33(3), 405-413. doi:10.1016/j.jas.2005.08.005

Otero, L., Varela, E., Mancebo, S., 2009. El análisis de visibilidad en la evaluación de impacto ambiental de nuevas construcciones. Informes de la Construcción, 61(515), 67-75. doi:10.3989/ic.09.014

Pérez, M., P., Llorens, F., García, E., Requena, A., 2008. Metodología para los estudios de paisaje en la Comunidad Valenciana. Tecnologías de la Información Geográfica para el Desarrollo Territorial. Las Palmas de Gran Canaria. Servicio de Publicaciones y Difusión Científica de la ULPGC.

Riggs, P. D., Dean, D. J., 2007. An Investigation into the Causes of Errors and Inconsistencies in Predicted Viewsheds. Transactions in GIS, 11(2), 175-196. doi:10.1111/j.1467-9671.2007.01040.x





Research articles