Meteorological drought using the Precipitation Condition Index in dry northeast Mexico during the 2000-2023 period

Víctor H. Domínguez-Meza

https://orcid.org/0009-0008-4494-7462

Mexico

Autonomous University of Tamaulipas image/svg+xml

Research and Postgraduate Division Study. Sciences and Engineering Faculty

Ignacio González Gutiérrez

Mexico

Autonomous University of Tamaulipas image/svg+xml

Research and Postgraduate Division Study. Sciences and Engineering Faculty

Wilberth A. Poot-Poot

https://orcid.org/0000-0002-2973-3289

Mexico

Autonomous University of Tamaulipas image/svg+xml

Research and Postgraduate Division Study. Sciences and Engineering Faculty

Xóchitl C. Ramírez Campanur

https://orcid.org/0009-0002-7697-3522

Mexico

Universidad Michoacana de San Nicolás de Hidalgo image/svg+xml

Postgraduate Division Study of the Architecture Faculty

|

Accepted: 2025-05-31

|

Published: 2025-06-30

DOI: https://doi.org/10.4995/raet.2025.22885
Funding Data

Downloads

Keywords:

PCI, IMERG, Mexico, Drought, SPI

Supporting agencies:

This research was not funded

Abstract:

Northeast Mexico is well known for having dry climate; nevertheless, agriculture and livestock stand among the top economic activities of the state. For the last 24 years, Tamaulipas has been struck by numerous meteorological droughts which have caused financial losses in the country. This work studied meteorological drought in Tamaulipas through remote sensing techniques and IMERG satellite imagery for accumulated precipitation for 2000-2023 period. Downloaded IMERG images were projected to WGS 84/ UTM14N, cropped in the shape of Tamaulipas and processed to compute the Precipitation Condition Index (PCI). As a method of validating, the Pearson Lineal Correlation was calculated for PCI results and Standardized Precipitation Index for one (SPI-1) and three (SPI-3) months. Six years are clearly identified as meteorological drought years: 2000, 2006, 2009, 2011, 2022 and 2023. Results obtained by PCI show drought events that match the dry years identified by the SPI. Furthermore, dry years are closely related to the low-activity annual tropical cyclone season in the Gulf of Mexico. PCI and SPI-1 in the northern region showed the best correlation between them (r=0.87), while the worst correlation was found between PCI and SPI-3 in the southern region (r=0.44), from which it is concluded that PCI is a meteorological drought index capable and adequate for monitoring meteorological drought in Tamaulipas and in similar weather conditions.

Show more Show less

References:

Agustín-Canales, N., Cruz-Sánchez, Y., Borja-de la Rosa, M.A., González-Tepale, M.R., Monterroso-Rivas, A.I. (2023). Drought vulnerability in Mexico’s forest ecosystems. Forests, 14(9), 1813. https://doi.org/10.3390/f14091813

Bocco, G., Orozco Ramírez, Q., Álvarez Larrain, A., Solis Castillo, B., Dobler-Morales, C., 2021. El estudio del impacto de la sequía en pequeñas comunidades rurales de México: una revisión de la bibliografía. Revista Bibliográfica de Geografía y Ciencias Sociales, 26(1314).

Breña-Naranjo, J.A., Pedrozo-Acuña, A., Pozos-Estrada, O., Jiménez-López, S.A., López-López, M.R. (2015). The contribution of tropical cyclones to rainfall in Mexico. Physics and Chemistry of the Earth, 83–84, 111-122. https://doi.org/10.1016/j.pce.2015.05.011

Comisión Nacional del Agua. (2001). Resumen de la Temporada de Ciclones Tropicales 2000. Gobierno de México. Recuperado el 21 de octubre de 2024, de https://smn.conagua.gob.mx/tools/DATA/Ciclones%20Tropicales/Resumenes/2000.pdf

Comisión Nacional del Agua. (2010). Monitor de Sequía en México. Gobierno de México. Recuperado el 21 de octubre de 2024, de https://smn.conagua.gob.mx/es/climatologia/monitor-de-sequia/monitorde-sequia-en-mexico

De Jesús, A., Breña-Naranjo, J.A., Pedrozo-Acuña, A., Alcocer-Yamanaka, V.H. (2016). The use of TRMM 3B42 product for drought monitoring in Mexico. Water, 8(8), 325. https://doi.org/10.3390/w8080325

Dezfuli, A.K., Ichoku, C.M., Mohr, K.I., Huffman, G.J. (2017). Precipitation characteristics in West and East Africa, from satellite and in-situ observations. Journal of Hydrometeorology, 18(6), 1799-1805. https://doi.org/10.1175/JHM-D-17-0068.1

Dominguez, C., Magaña, V. (2018). The role of tropical cyclones in precipitation over the tropical and subtropical North America. Frontiers in Earth Science, 6, 19. https://doi.org/10.3389/feart.2018.00019

Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., Huang, Y. (2013). A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23, 245-253. https://doi.org/10.1016/j.jag.2012.09.010

European Drought Observatory. (2020). Standardized Precipitation Index (SPI). Copernicus. Recuperado el 3 de noviembre de 2024, de https://drought.emergency.copernicus.eu/data/factsheets/factsheet_spi.pdf

Franklin, J.L., Brown, D.P. (2007). Atlantic hurricane season of 2006. Monthly Weather Review, 136(4), 1174-1200. https://doi.org/10.1175/2007MWR2377.1

Gallardo, B., Brown, O., Álvarez, M. (2018). Análisis de los impactos provocados por la sequía agrícola en los cultivos de maíz y frijol en áreas agrícolas del municipio Venezuela, Ciego de Ávila, Cuba. Sociedade & Natureza, 30(2), 96-115. https://doi.org/10.14393/SN-v30n2-2018-5

Instituto Nacional de Estadística y Geografía. (2023). Censo Agropecuario 2022. INEGI. Recuperado el 16 de octubre de 2024, de https://www.inegi.org.mx/programas/ca/2022/

Instituto Nacional de Estadística y Geografía. (2020). Clima. INEGI. Recuperado el 16 de octubre de 2024, de https://cuentame.inegi.org.mx/monografias/informacion/tam/territorio/clima.aspx?tema=me&e=28

Jiang, S., Wei, L., Ren, L., Xu, C., Zhong, F., Wang, M., Zhang, L., Liu, Y. (2021). Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over mainland China. Atmospheric Research, 247, 105141. https://doi.org/10.1016/j.atmosres.2020.105141

Jiao, W., Tian, C., Chang, Q. (2019). A new multisensor integrated index for drought monitoring. Agricultural and Forest Meteorology, 268, 74-85. https://doi.org/10.1016/j.agrformet.2019.01.008

Knight, D.B., Davis, R.E. (2009). Contribution of tropical cyclones to extreme rainfall events in the southeastern United States. Journal of Geophysical Research: Atmospheres, 114(D23). https://doi.org/10.1029/2009JD012511

Li, J., Li, Y., Yin, L., Zhao, Q. (2024). A novel composite drought index combining precipitation, temperature and evapotranspiration used for drought monitoring in the Huang-Huai-Hai Plain. Agricultural Water Management, 291, 108626. https://doi.org/10.1016/j.agwat.2023.108626

Lobato-Sánchez, R. (2016). El monitor de la sequía en México. Tecnología y Ciencias del Agua, 7(5), 197-211.

Macedo-García, H.S. (2022). Relación entre la sequía meteorológica e hidrológica en la subcuenca Chancos, Ancash. Llamkasun, 3(1), 20-28. https://doi.org/10.47797/llamkasun.v3i1.79

Magaña, V., Méndez, B., Neri, C., Vázquez, G. (2018). El riesgo ante la sequía meteorológica en México. Realidad, Datos y Espacio Revista Internacional de Estadística y Geografía, 9(2), 30-41.

McKee, T.B., Doesken, N.J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales. En Eighth Conference on Applied Climatology (pp. 179-184). American Meteorological Society.

Mehran, A., Mazdiyasni, O., AghaKouchak, A. (2015). A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. Journal of Geophysical Research: Atmospheres, 120(15), 7520-7533. https://doi.org/10.1002/2015JD023147

Ortega-Gaucin, D., Bartolón de la Cruz, J., Castellano- Bahena, H.V. (2018). Drought Vulnerability Indices in Mexico. Water, 10(11), 1671. https://doi.org/10.3390/w10111671

Secretaría de Agricultura y Desarrollo Social. Servicio de Información Agroalimentaria y Pesquera (SIAP). Gobierno de México. Recuperado el 18 de octubre de 2024, de https://nube.siap.gob.mx/cierreagricola/

Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., Vogt, J. (2013). World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology, 34(8), 2792-2804. https://doi.org/10.1002/joc.3875

Van Loon, A.F. (2015). Hydrological drought explained. WIREs Water, 2(4), 359-392. https://doi.org/10.1002/wat2.1085

Vázquez-Rodríguez, D.A., Guerra-Cobián, V.H., Bruster-Flores, J.L., Fonseca, C.R., Yépez-Rincón, F.D. (2024). Evaluating the performance and applicability of satellite precipitation products over the Rio Grande-San Juan basin in northeast Mexico. Atmosphere, 15(7), 749. https://doi.org/10.3390/atmos15070749

Veneziano, M.F., García, M.C. (2022). Causas e impactos de la sequía 2022-2022 en el sudeste bonaerense. Contribuciones Científicas GÆA, 34, 38-51.

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1

Wei, L., Jiang, S., Ren, L., Zhang, L., Wang, M., Duan, Z. (2020). Preliminary utility of the retrospective IMERG precipitation product for large-scale drought monitoring over mainland China. Remote Sensing, 12(18), 2993. https://doi.org/10.3390/rs12182993

Wei, W., Zhang, J., Zhou, L., Xie, B., Zhou, J., Li, C. (2021). Comparative evaluation of drought indices for monitoring drought based on remote sensing data. Environmental Science and Pollution Research, 28(16), 20408-20425. https://doi.org/10.1007/s11356-020-12120-0

Wilhite, D.A., Glantz, M.H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10(3), 111-120. https://doi.org/10.1080/02508068508686328

Yu, L., Leng, G., Python, A. (2022). A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China. Weather and Climate Extremes, 36, 100458. https://doi.org/10.1016/j.wace.2022.100458

Zhang, H., Yin, G., Zhang, L. (2022). Evaluating the impact of different normalization strategies on the construction of drought condition indices. Agricultural and Forest Meteorology, 323, 109045. https://doi.org/10.1016/j.agrformet.2022.109045

Show more Show less