Remote sensing for greenhouse detection from stereo pairs of WorldView-2 satellite

Authors

  • M.A. Aguilar Universidad de Almería
  • M.A. Montalbán Universidad de Almería
  • M.M. Saldaña Universidad de Almería
  • F.J. Aguilar Universidad de Almería
  • I. Fernández Universidad de Almería
  • A.M. García-Lorca Universidad de Almería

DOI:

https://doi.org/10.4995/raet.2014.2288

Keywords:

WorldView-2, OBIA, Digital Surface Model, Digital Elevation Model, Greenhouse classification

Abstract

The successful launch of the first very high resolution (VHR) satellites capable of capturing panchromatic imagery of the land surface with ground sample distance even lower than 1 m (e.g. IKONOS in 1999 or QuickBird in 2001) marked the beginning of a wholly new age in remote sensing. On January 4, 2010, images of WorldView-2 were placed on the market. Possibly it is the most sophisticated commercial VHR satellite currently orbiting the Earth and the exploitation of its data poses a challenge to researchers worldwide. Moreover, the practice of under plastic agriculture had a great development in the Mediterranean area during the past 60 years, especially in Almeria, acting as a key economic driver in the area. The goal of this work is the automatic greenhouse mapping by using Object Based Image Analysis (OBIA). The required input data will be a pan-sharpened orthoimage and a normalized digital surface model (nDSM) for objects, both products generated from a WorldView-2 stereo pair. The attained results show that the very high resolution 8-band multispectral and the nDSM data improve the greenhouses automatic detection. In this way, overall accuracies higher than 90% can be achieved.

Downloads

Download data is not yet available.

Author Biographies

M.A. Aguilar, Universidad de Almería

Profesor Titular del Área de Expresión Gráfica en la Ingeniería, Dpto. de Ingeniería, Universidad de Almería.

M.A. Montalbán, Universidad de Almería

Ingeniero Técnico Agrícola formado en la Universidad de Almería.

M.M. Saldaña, Universidad de Almería

Formada como Doctora en el Dpto. de Ingeniería de la Universidad de Almería. Fecha de defensa: 6 de mayo de 2013.

F.J. Aguilar, Universidad de Almería

Catedrático de Universidaden elÁrea de Expresión Gráfica en la Ingeniería, Dpto. de Ingeniería, Universidad de Almería.

I. Fernández, Universidad de Almería

Doctor Ingeniero en Cartografía y Geodesia. Actualmente disfruta de un contrato de investigación posdoctoral en la Universidad de Almería.

A.M. García-Lorca, Universidad de Almería

Catedrático de Universidad en el Dpto. de Geografía e Historia. Actualmente ocupa el cargo de Subdelegado del Gobierno en Almería.

References

Agüera, F., Aguilar, F.J., Aguilar, M.A., 2008. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2008), 635-646. doi:10.1016/j.isprsjprs.2008.03.003

Aguilar, M. A., Saldaña, M. M., Aguilar, F. J., 2013a. Assessing geometric accuracy of the orthorectification process from GeoEye-1and WorldView-2 panchromatic images. International Journal of Applied Earth Observation and Geoinformation, 21, 427-435. doi:10.1016/j.jag.2012.06.004

Aguilar, M. A., Saldaña, M. M., Aguilar, F. J., 2013b. GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. International Journal of Remote Sensing, 34(7), 2583-2606. doi:10.1080/01431161.2012.747018

Aguilar, M. A., Saldaña, M. M., Aguilar, F. J., 2014. Generation and Quality Assessment of Stereo-Extracted DSM from GeoEye-1 and WorldView-2 Imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1259-1271. doi:10.1109/TGRS.2013.2249521

Arcidiacono, C., Porto, S., 2010. A model to manage crop-shelter spatial development by multi-temporal coverage analysis and spatial indicators. Biosystems Engineering, 107, 107-122. doi:10.1016/j.biosystemseng.2010.07.007

Congalton, R. G., 1991. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment, 37, 35-46. doi:10.1016/0034-4257(91)90048-B

Espí, E., Salmerón, A., Fontecha, A., García, Y., Real, A.I., 2006. Plastic films for agricultural applications. Journal of Plastic Film and Sheeting, 22, 85-102. doi:10.1177/8756087906064220

FAO, 2002. El cultivo protegido en clima mediterráneo. Estudio FAO Producción y Protección Vegetal 90, Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma.

Gitelson, A., Zur, Y., Chivkunova, O., Merzlyak, M., 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75(3), 272-281. doi:10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2

Levin, N., Lugassi, R., Ramon, U., Braun, O., Benâ€Dor, E., 2007. Remote sensing as a tool for monitoring plasticulture in agricultural landscapes. International Journal of Remote Sensing, 28(1), 183-202. doi:10.1080/01431160600658156

Oumar, Z., Mutanga, O., 2013. UsingWorldView-2 bands and indices to predict bronze bug (Thaumastocoris peregrinus) damage in plantation forests. International Journal of Remote Sensing, 34(6), 2236-2249. doi:10.1080/01431161.2012.743694

Parra, S., Aguilar, F.J., Calatrava, J., 2008. Decision modelling for environmental protection: the contingent valuation method applied to greenhouse waste management. Biosystems Engineering, 99(4), 469-477. doi:10.1016/j.biosystemseng.2007.11.016

Picuno, P., Tortora, A., Capobianco, R.L., 2011. Analysis of plasticulture landscapes in Southern Italy through remote sensing and solid modelling techniques. Landscape and Urban Planning, 100(2011), 45-56. doi:10.1016/j.landurbplan.2010.11.008

Tarantino, E., Figorito, B., 2012. Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data. Remote Sensing, 4, 1913-1928. doi:10.3390/rs4071913

Torrens, M., 2006. El sector de Invernaderos en Marruecos. Instituto Español de Comercio Exterior (ICEX). Nota Sectorial, 15 pp.

Vogelmann, J.E., Rock, B.N., Moss, D.M., 1993. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14(8), 1563-1575. doi:10.1080/01431169308953986

Published

2014-05-30

Issue

Section

Research articles