Scientific exploitation of PAZ products in coastal surveillance and monitoring tasks


  • M.P. Jarabo Universidad de Alcalá
  • M.J. González Instituto Nacional de Técnica Aeroespacial-INTA
  • D. de la Mata Universidad de Alcalá
  • J. Martín de Nicolás Universidad de Alcalá
  • N. del Rey Universidad de Alcalá
  • J.L. Bárcena Universidad de Alcalá
  • V.M. Peláez Universidad de Alcalá



SAR, Speckle, Segmentation, Ship detection, Maritime applications


PAZ mission appears due to the need of a Spanish SAR satellite able to provide radar image products for security and defense, civil and scientific users. INTA is responsible for the technical direction of the Ground Segment, as well as the development of the Calibration and Validation Centre and the scientific exploitation. The ‘Demonstrator of Maritime SAR Applications’ is proposed as an answer to detection tasks in maritime synthetic aperture radar imagery, which are not completely solved yet. DeMSAR has been developed in the framework of a contract between the Spanish National Institute for Aerospace Technology (INTA) and the University of Alcalá. It is intended to be used as a demonstrator of the capabilities of the airborne SAR prototypes of INTA as well as for PAZ, the Spanish SAR satellite. With two operation modes, an automatic ship detector and a toolboxes mode, DeMSAR offers the user a high flexibility in SAR data processing tasks such as speckle filtering, coastline detection, land mask estimation and ship detection and characterization.


Download data is not yet available.


Canny, J., 1986. A computational approach to edge detection, IEEE Trans. on Pattern Anal. and Machine Intel., PAMI-8(6), 679-698. doi:10.1109/TPAMI.1986.4767851

Cheng, P. et al., 2005. Comparison of ship detection algorithms in spaceborne SAR imagery, IEEE IGARSS’05, 3, 1750-1752. doi:10.1109/IGARSS.2005.1526341

Comaniciu, D. & Meer, P., 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Anal. and Machine Intel., 24(5), 603-618. doi:10.1109/34.1000236

Duda, R. O. & Hart, P. E., 1973. Pattern classification and scene analysis. Wiley.

Frost, V. S., Stiles, J. A., Shanmugan, K. S. & Holtzman, J. C., 1982. A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. on Pattern Anal. and Machine Intel., PAMI-4(2), 157-166. doi:10.1109/TPAMI.1982.4767223

Fukunaga, K. & Hostetler, L., 1975. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 21(1), 32-40. doi:10.1109/TIT.1975.1055330

Jarabo, P., Rosa, M., De la Mata, D., Vicen, R. & Maldonado, S., 2011. Spatial-Range Mean-Shift Filtering and Segmentation Applied to SAR Images, IEEE Trans. on Instrum. and Measurement. 60(2), 584-597. doi:10.1109/TIM.2010.2052478

Lee, J. S., 1980. Digital Image Enhancement and noise filtering by use of local statistics, IEEE Trans. on Pattern Anal. and Machine Intel., PAMI-2(2), 165-168. doi:10.1109/TPAMI.1980.4766994

Lopes, A., Nezry, E., Touzi, R. & Laur, H., 1990. Maximum a posteriori filtering and first order texture models in SAR images, IGARSS’90, Washington D.C., Estados Unidos, 2409-2412. doi:10.1109/IGARSS.1990.689026

Mallat, S., 2008. A wavelet tour of signal processing. 3rd Edition. Academic Press.

Mata-Moya, D. et al., 2010. Application of Mean-Shift filtering to ship wakes detection in SAR images, European Conference on Synthetic Aperture Radar, Aachen, Alemania.

Niedermeier, A. et al., 2000. Detection of coastlines in SAR images using wavelet methods, IEEE Trans. on Geosc. Remote Sensing, 38(5), 2270-2281. doi:10.1109/36.868884

Touzi, R., Lopes, A. & Bousquet, P., 1988. A statistical and geometrical edge detector for SAR images, IEEE Transactions on Geoscience and Remote Sensing, 26, 764-773. doi:10.1109/36.7708





Practical cases