Herbaceous biomass estimation using hyperspectral data, PLS regression and continuum removal transformation

M. Marabel-García, F. Álvarez-Taboada


The aim of this research work was to compare the results of two methods to estimate aboveground biomass by using field spectrometer data: (i) Partial least squares regression (PLSR), and (ii) linear regression applied to the Maximum Band Depth (MBD) and Area Over the Minimum (AOM) indices. In both cases different regions of the spectrum were transformed by Continuum Removal (CR). Since the results using PLSR (R2=0.920, RMSE=3.622 g/m2) were similar to the results achieved by the indices (R2=0.915, RMSE=3.615 g/m2 for AOM), using the indices derived from CR is recommended, since their interpretation is easier than the PLS output.


biomass; grass; continuum-removal; spectroradiometer; hyperspectral; partial least squares regression

Full Text:



Adjorlolo, C., Cho, M.A., Mutanga, O., Ismail, R. classification of C3 and C4 grass species, using wavelengths of known absorption features. Journal of Applied Remote Sensing, 6(1), 1-15. http://dx.doi.org/10.1117/1.JRS.6.063560

Atzberger, C., Guérif, M., Baret, F., Werner, W. 2010. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Computers and Electronics in Agriculture, 73(2), 165-173. http://dx.doi.org/10.1016/j.compag.2010.05.006

Axelsson, C., Skidmore, A.K., Schlerf, M., Fauzi, A., Verhoef, W. 2013. Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression. International Journal of Remote Sensing, 34(5), 1724-1743. http://dx.doi.org/10.1080/01431161.2012.725958

Barrio, A.M., Balboa, M.M.A., Castedo, D.F., Diéguez, A.U., Álvarez, G.J.A. 2006. An ecoregional model for estimating volume, biomass and carbon pools in maritime pine stands in Galicia (northwestern Spain). Forest Ecology and Management, 223(1-3), 24-34. http://dx.doi.org/10.1016/j.foreco.2005.10.073

Cho, M.A., Skidmore, A.K., Corsi, F., Van Wieren, S.E., Sobhan, I. 2007. Estimation of green grass - herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation, 9(4), 414-424. http://dx.doi.org/10.1016/j.jag.2007.02.001

Chuvieco, E., Huete, A. 2010. Fundamentals of satellite remote sensing. Boca Raton (FL), CRC Press. Boca Raton (USA), 302-310.

Clevers, J.G.P.W., Kooistra, L., Schaepman, M.E. 2008. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. International Journal of Applied Earth Observation and Geoinformation, 10(3), 388-397. http://dx.doi.org/10.1016/j.jag.2008.03.003

Curran, P.J., Dungan, J.L., Peterson, D.L. 2001. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 76(3), 349-359. http://dx.doi.org/10.1016/S0034-4257(01)00182-1

De Jong, S.M. 1994. Applications of Reflective Remote Sensing for Land Degradation Studies in a Mediterranean, Environment. (Netherlands Geographical Studies (NGS)). Ph.D. Dissertation, Utrecht University, Utrecht, The Netherlands.

Dunn, B.W., Beecher, H.G., Batten, G.D., Ciavarella, S. 2002. The potential of near-infrared reflectance spectroscopy for soil analysis, a case study from the Riverine Plain of south-eastern Australia. Australian Journal of Experimental Agriculture, 42(5), 607-614. http://dx.doi.org/10.1071/EA01172

Gao, X., Huete, A.R., Ni, W., Miura, T. 2000. Optical biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment, 74(3), 609-620. http://dx.doi.org/10.1016/S0034-4257(00)00150-4

Geladi, P., Kowalski, B.R. 1986. Partial leastsquares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. http://dx.doi.org/10.1016/0003-2670(86)80028-9

Grossman, Y.L. Ustin, S.L., Jacquemoud, S., Sanderson, E.W., Schmuck, G.; Verdebout, J., 1996. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment, 56(3), 182-193. http://dx.doi.org/10.1016/0034-4257(95)00235-9

Huang, Z., Turner, B.J., Dury, S.J., Wallis, I.R., Foley, W.J. 2004. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment, 93(1-2), 18-29. http://dx.doi.org/10.1016/j.rse.2004.06.008

Kokaly, R.F., Clark, R.N. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67(3), 267-287. http://dx.doi.org/10.1016/S0034-4257(98)00084-4

Kooistra, L., Wanders, J., Epema, G.F., Leuven, R.S.E.W., Wehrens, R., Buydens, L.M.C. 2003. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Analytica Chimica Acta, 484(2), 189-200. http://dx.doi.org/10.1016/S0003-2670(03)00331-3

Kooistra, L., Suárez Barranco, M.D., van Dobben, H., Schaepman, M.E. 2006. Regional Scale Monitoring of Vegetation Biomass in river floodplains using Imaging Spectroscopy and Ecological Modeling. En: Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July-4 August 2006, 124-127.

Marabel, M., Álvarez, F. 2013. Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression. Sensors, 13(8), 10027-10051. http://dx.doi.org/10.3390/s130810027

Mutanga, O., Skidmore, A.K. 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25(19), 3999-4014. http://dx.doi.org/10.1080/01431160310001654923

Mutanga, O., Ismail R. 2010. Variation in foliar water content and hyperspectral reflectance of Pinus patula trees infested by Sirex noctilio. Southern Forests, 72 (1), 1-7. http://dx.doi.org/10.2989/2070 2620.2010.481073

Nitsch, B.B., Meyer, G.E., Mortensen, D.A. 1991. Visible near-infrared plant, soil and crop residue reflectivity for weed sensor design. ASAE, Paper No. 91-3006. ASAE, St. Joseph, MI, USA.

Pordesimo, L.O., Edens, W.C., Sokhansanj, S. 2004. Distribution of aboveground biomass in corn stover. Biomass and Bioenergy, 26(4), 337-343. http://dx.doi.org/10.1016/S0961-9534(03)00124-7

Pu, R., Ge, S., Kelly, N.M., Gong, P. 2003. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves. International Journal of Remote Sensing, 24(9), 1799-1810.


Schlerf, M., Atzberger, C., Hill, J. 2005. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 95(2), 177-194. http://dx.doi.org/10.1016/j.rse.2004.12.016

Smith, G.M., Currran, P.J. 1996. The signal-to-noise ratio (SNR) required for the estimation of foliar biochemical concentrations. International Journal of Remote Sensing, 17(5), 1031-1058. http://dx.doi.org/10.1080/01431169608949062

Vasques, G.M., Grunwald, S., Sickman, J.O. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, 146(1-2), 14-25. http://dx.doi.org/10.1016/j.geoderma.2008.04.007

Williams, P.C., Norris, K.H. 1987. Near-Infrared Technology in the Agricultural and Food Industries. St. Paul, MN, USA: American Association of Cereal Chemists, 143-167

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-waveform data
P. Crespo-Peremarch, L.A. Ruiz, A. Balaguer-Beser
Revista de Teledetección  issue: 45  first page: 27  year: 2016  
doi: 10.4995/raet.2016.4066


This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet