Vegetation vulnerability to drought in Spain

F.J. García-Haro

Spain

Universitat de València

Unitat de Investigació en Teledetecció, Departament de Física de la Terra i Termodinàmica, Universitat de València

M. Campos-Taberner

Spain

Universitat de València

Unitat de Investigació en Teledetecció, Departament de Física de la Terra i Termodinàmica, Universitat de València

N. Sabater

Spain

Universitat de València

Unitat de Investigació en Teledetecció, Departament de Física de la Terra i Termodinàmica, Universitat de València

F. Belda

Spain

Universitat de València

Unitat de Investigació en Teledetecció, Departament de Física de la Terra i Termodinàmica, Universitat de València

A. Moreno

Spain

AEMET

M.A. Gilabert

Spain

Universitat de València

Unitat de Investigació en Teledetecció, Departament de Física de la Terra i Termodinàmica, Universitat de València

B. Martínez

Spain

Universitat de València

Unitat de Investigació en Teledetecció, Departament de Física de la Terra i Termodinàmica, Universitat de València

A. Pérez-Hoyos

Spain

Universitat de València

Unitat de Investigació en Teledetecció, Departament de Física de la Terra i Termodinàmica, Universitat de València

J. Meliá

Spain

Universitat de València

Unitat de Investigació en Teledetecció, Departament de Física de la Terra i Termodinàmica, Universitat de València
|

Accepted: 2014-06-29

|

Published: 2014-12-16

DOI: https://doi.org/10.4995/raet.2014.2283
Funding Data

Downloads

Keywords:

drought, vegetation cover, climate, SPI, remote sensing

Supporting agencies:

Proyectos DULCINEA (CGL2005–04202)

RESET CLIMATE (CGL2012–35831)

LSA SAF (EUMETSAT) y ERMES (FP7-SPACE-2013

Contract 606983)

Abstract:

Frequency of climatic extremes like long duration droughts has increased in Spain over the last century.

The use of remote sensing observations for monitoring and detecting drought is justified on the basis that vegetation vigor is closely related to moisture condition. We derive satellite estimates of bio-physical variables such as fractional vegetation cover (FVC) from MODIS/EOS and SEVIRI/MSG time series. The study evaluates the strength of temporal relationships between precipitation and vegetation condition at time-lag and cumulative rainfall intervals. From this analysis, it was observed that the climatic disturbances affected both the growing season and the total amount of vegetation. However, the impact of climate variability on the vegetation dynamics has shown to be highly dependent on the regional climate, vegetation community and growth stages. In general, they were more significant in arid and semiarid areas, since water availability most strongly limits vegetation growth in these environments.

Show more Show less

References:

García-Haro, F.J., Sommer, S., Kemper,T. 2005. A new tool for variable multiple endmember spectral mixture analysis (VMESMA). International Journal of Remote Sensing, 26(10): 2135-2162. http://dx.doi.org/10.1080/01431160512331337817

García-Haro, F.J., Belda, F., Poquet, D. 2008. Estimation of climatological variables in Spain during the 1950-2008 period using geostatistical techniques. En: 8th Annual Meeting of the EMS / 7th European Conference on Applied Climatology (ECAC). Amsterdam, Holanda, 29 septiembre-3 octubre. EMS2008-A-00319.

García-Haro, F.J., Pérez-Hoyos A. 2010. Land cover classification in Spain from seasonal trajectories of MODIS data. En: Proceedings of the RAQRS2010, 3rd Symposium on Recent Advances in Quantitative Remote Sensing. Torrent, España, 27 septiembre - 1 octubre. pp 562-567.

García-Haro, F.J., Camacho, F., Gilabert, M.A., Meliá, J. 2013. Monitoring of vegetation properties. Products overview and applications: drought assessment. En: 8th APMG Symposium on Meteorology and Geophysics. Ericeira, Portugal. 18-21 marzo.

Ji, L., Peters A.J. 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87(1): 85-98. http://dx.doi.org/10.1016/S0034-4257(03)00174-3

Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J. 1996. SOM_PAK: The Self-Organizing Map Program Package. Technical Report A31, Helsinki University of Technology.

Liu, Z., Notaro, M., Kutzbach, J., Liu, N. 2006. Assessing global vegetation-climate feedbacks from observations. Journal of Climate, 19: 787-814. http://dx.doi.org/10.1175/JCLI3658.1

Mckee, T.B., Doesken, N.J., Kleist, J. 1993. The relationship of drought frecuency and duration to time scales. En: Proceedings of the 8th Conference of Applied Climatology. Anaheim, EE.UU. 17-22 enero. pp 179-184.

Moreno-Martínez, A., Soria-Olivas, E., García-Haro, F.J., Martín Guerrero, J.D., Magdalena, R. 2010. Neural models for rainfall prediction. Capítulo 21 en “Soft Computing Methods for Practical Environmental Solutions: Techniques and Studies”, pp 353-369. New York: Gestal, M. y Rivero, D.

Paruelo, J.M., Lauenroth, W.K. 1995. Regional Patterns of Normalized Difference Vegetation Index in North American Shrublands and Grasslands. Ecology, 76(6): 1888-1898. http://dx.doi.org/10.2307/1940721

Peñuelas, J., Filella, I., Zhang, X., Llorens, L., Ogaya, R., Lloret, F., Comas, P., Estiarte, M., Terradas, J. 2004. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist, 161(3): 837-846. http://dx.doi.org/10.1111/j.1469-8137.2004.01003.x

Pérez-Hoyos, A., García-Haro F.J, Valcárcel, N. 2014. Incorporating sub-dominant classes in the accuracy assessment of large scale land cover products:Application to GlobCover, MODISLC, GLC2000 and CORINE in Spain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1): 187-205. http://dx.doi.org/10.1109/JSTARS.2013.2258659

Poquet, D., Belda, F., García-Haro, F.J. 2008. Regionalización de la sequía en la península ibérica desde 1950 hasta 2007 a partir del SPI y una modelización digital terreno. En: XXX Jornadas Científicas de la Asociación Meteorológica Española “Agua y Cambio Climático”, IX Encuentro Hispano-Luso de Meteorología y XII Congreso Latinoamericano e Ibérico de Meteorología. Zaragoza, España. 5-7 de mayo.

Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. The Geographical Review, 38(1): 55-94. http://dx.doi.org/10.2307/210739

Verbesselt, A., Zeileis, A., Herold, M. 2012. Near Real-Time Disturbance Detection Using Satellite Image Time Series. Remote Sensing of Environment, 123:98-108. http://dx.doi.org/10.1016/j.rse.2012.02.022

Vicente-Serrano, S.M. 2007. Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi–arid Region. Natural Hazards, 40(1): 173-208. http://dx.doi.org/10.1007/s11069-006-0009-7

Wang, J., Rich, P.M., Price, K.P. 2003. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 24(11): 2345-2364. http://dx.doi.org/10.1080/01431160210154812

.

Show more Show less