Vegetation vulnerability to drought in Spain

F.J. García-Haro, M. Campos-Taberner, N. Sabater, F. Belda, A. Moreno, M.A. Gilabert, B. Martínez, A. Pérez-Hoyos, J. Meliá


Frequency of climatic extremes like long duration droughts has increased in Spain over the last century.

The use of remote sensing observations for monitoring and detecting drought is justified on the basis that vegetation vigor is closely related to moisture condition. We derive satellite estimates of bio-physical variables such as fractional vegetation cover (FVC) from MODIS/EOS and SEVIRI/MSG time series. The study evaluates the strength of temporal relationships between precipitation and vegetation condition at time-lag and cumulative rainfall intervals. From this analysis, it was observed that the climatic disturbances affected both the growing season and the total amount of vegetation. However, the impact of climate variability on the vegetation dynamics has shown to be highly dependent on the regional climate, vegetation community and growth stages. In general, they were more significant in arid and semiarid areas, since water availability most strongly limits vegetation growth in these environments.


drought; vegetation cover; climate; SPI; remote sensing

Full Text:



García-Haro, F.J., Sommer, S., Kemper,T. 2005. A new tool for variable multiple endmember spectral mixture analysis (VMESMA). International Journal of Remote Sensing, 26(10): 2135-2162.

García-Haro, F.J., Belda, F., Poquet, D. 2008. Estimation of climatological variables in Spain during the 1950-2008 period using geostatistical techniques. En: 8th Annual Meeting of the EMS / 7th European Conference on Applied Climatology (ECAC). Amsterdam, Holanda, 29 septiembre-3 octubre. EMS2008-A-00319.

García-Haro, F.J., Pérez-Hoyos A. 2010. Land cover classification in Spain from seasonal trajectories of MODIS data. En: Proceedings of the RAQRS2010, 3rd Symposium on Recent Advances in Quantitative Remote Sensing. Torrent, España, 27 septiembre - 1 octubre. pp 562-567.

García-Haro, F.J., Camacho, F., Gilabert, M.A., Meliá, J. 2013. Monitoring of vegetation properties. Products overview and applications: drought assessment. En: 8th APMG Symposium on Meteorology and Geophysics. Ericeira, Portugal. 18-21 marzo.

Ji, L., Peters A.J. 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87(1): 85-98.

Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J. 1996. SOM_PAK: The Self-Organizing Map Program Package. Technical Report A31, Helsinki University of Technology.

Liu, Z., Notaro, M., Kutzbach, J., Liu, N. 2006. Assessing global vegetation-climate feedbacks from observations. Journal of Climate, 19: 787-814.

Mckee, T.B., Doesken, N.J., Kleist, J. 1993. The relationship of drought frecuency and duration to time scales. En: Proceedings of the 8th Conference of Applied Climatology. Anaheim, EE.UU. 17-22 enero. pp 179-184.

Moreno-Martínez, A., Soria-Olivas, E., García-Haro, F.J., Martín Guerrero, J.D., Magdalena, R. 2010. Neural models for rainfall prediction. Capítulo 21 en “Soft Computing Methods for Practical Environmental Solutions: Techniques and Studies”, pp 353-369. New York: Gestal, M. y Rivero, D.

Paruelo, J.M., Lauenroth, W.K. 1995. Regional Patterns of Normalized Difference Vegetation Index in North American Shrublands and Grasslands. Ecology, 76(6): 1888-1898.

Peñuelas, J., Filella, I., Zhang, X., Llorens, L., Ogaya, R., Lloret, F., Comas, P., Estiarte, M., Terradas, J. 2004. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist, 161(3): 837-846.

Pérez-Hoyos, A., García-Haro F.J, Valcárcel, N. 2014. Incorporating sub-dominant classes in the accuracy assessment of large scale land cover products:Application to GlobCover, MODISLC, GLC2000 and CORINE in Spain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1): 187-205.

Poquet, D., Belda, F., García-Haro, F.J. 2008. Regionalización de la sequía en la península ibérica desde 1950 hasta 2007 a partir del SPI y una modelización digital terreno. En: XXX Jornadas Científicas de la Asociación Meteorológica Española “Agua y Cambio Climático”, IX Encuentro Hispano-Luso de Meteorología y XII Congreso Latinoamericano e Ibérico de Meteorología. Zaragoza, España. 5-7 de mayo.

Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. The Geographical Review, 38(1): 55-94.

Verbesselt, A., Zeileis, A., Herold, M. 2012. Near Real-Time Disturbance Detection Using Satellite Image Time Series. Remote Sensing of Environment, 123:98-108.

Vicente-Serrano, S.M. 2007. Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi–arid Region. Natural Hazards, 40(1): 173-208.

Wang, J., Rich, P.M., Price, K.P. 2003. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 24(11): 2345-2364.


Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Aridity in the Iberian Peninsula (1960–2017): distribution, tendencies, and changes
L.L. Paniagua, A. García-Martín, F.J. Moral, F.J. Rebollo
Theoretical and Applied Climatology  vol: 138  issue: 1-2  first page: 811  year: 2019  
doi: 10.1007/s00704-019-02866-0


This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953