Mapping marine and fluvial salt crusts in estuaries collecting acid water using hyperspectral Hyperion imagery (Marshes of the river Odiel, Huelva)


  • A. Riaza Instituto Geológico y Minero de España
  • E. García-Meléndez Universidad de León
  • V. Carrère Université de Nantes
  • A. Mueller German Space Agency (DLR)



Imaging spectroscopy, Geology, Estuaries, Environmental monitoring, Hyperion, Acid mine drainage


Temporal monitoring of salt efflorescence on the marshes at the mouth of the river Odiel (Huelva) is made using hyperspectral archive Hyperion data. Climate variability estimations are made based on well-known spectral features related to vegetation and shallow water, using archive spectral libraries. The observations point to spectral and geomorphological indicators which can be monitored through image processing supported by field and laboratory spectral data, on a repeatable basis. Mapping a larger sequence of images under different climate regime and wider tidal range, would improve the estimation of spectral features to ensure a routine monitoring of salt crusts with hyperspectral data.


Download data is not yet available.

Author Biographies

A. Riaza, Instituto Geológico y Minero de España

Cientifico Titular

Departamento de Investigación en Recursos Minerales

E. García-Meléndez, Universidad de León

Facultad de Ciencias Ambientales

V. Carrère, Université de Nantes

Laboratoire de Planétologie et Géodynamique

A. Mueller, German Space Agency (DLR)

German Remote Sensing Data Center


AEMET (Agencia Estatal de Meteorología, Spain), Resumen Anual Climatológico de los años 2005, 2006, 2007 y 2009. Ultimo acceso: 19 de Marzo de 2014,

Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A., Marani, M., 2006. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sensing of Environment, 105, 54–67. DOI: 10.1016/j.rse.2006.06.006.

Buzzi, J., 2012. Imaging spectroscopy to evaluate the contamination from sulphide mine waste in the Iberian Pyrite Belt using hyperspectral sensors (Huelva, Spain), Tesis Doctoral Universidad de León, 212 p.

Hunter, E.L., Power, C.H. 2002. An assessment of two classification methods for mapping Thames Estuary intertidal habitats using CASI data. International Journal of Remote Sensing, 23(15), 2989-3008. http://

Jupp, D.L.B., 2001. Discussion around Hyperion Data. CSIRO Office of Space Science Applications, Earth Observation Centre: 1-9.

Jupp, D.L.B., Datt, B., Lovell, J., Campbell, S., King, E. 2002. Discussions around Hyperion Data: Background Notes for the Hyperion Data Users Workshop. CSIRO Earth Observation Centre 2002.

Riaza, A., Müller, A. 2010. Hyperspectral Remote Sensing monitoring of Pyrite Mine Wastes: A record of climate variability (Pyrite Belt, Spain). Environmental Earth Sciences, 61(3), 575-594. DOI:10.1007/s12665-009-0368-y

Riaza, A., Buzzi, J., García-Meléndez, E., Carrére, V., Sarmiento, A., Müller, A. 2012a. River acid mine drainage sink by coastal tides: sediment and water mapping through hyperspectral Hymap data, International Journal of Remote Sensing, 33(19), 6163-6185. DOI:0.1080/01431161.2012.675454.

Riaza, A., Buzzi, J., García-Meléndez, E., Vazquez, I., Bellido, E., Carrère, V., Müller, A. 2012b. Pyrite mine waste and water mapping using Hymap and Hyperion hyperspectral data, Environmental Earth Sciences, 66(7), 1957-1971. DOI: 10.1007/s12665-011-1422-0.

Richter, R., Schläpfer, D. 2002. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. International Journal of Remote Sensing 23, 2631-2649. http://

REDMAR (Red de Mareógrafos de Puertos del Estado). Informes Anuales años 2005, 2006, 2007 y 2009. Ultimo acceso: 19 de Marzo de 2014,

RSI, 2000. ENVI User´s Guide. Research Systems Inc. Publications.





Research articles