Multitemporal evaluation of topographic correction methods using multispectral synthetic images

Authors

  • I. Sola Universidad Pública de Navarra
  • M. González-Audícana Universidad Pública de Navarra
  • J. Álvarez-Mozos Universidad Pública de Navarra
  • J.L. Torres Universidad Pública de Navarra

DOI:

https://doi.org/10.4995/raet.2014.2246

Keywords:

Topographic correction, Multitemporal, Synthetic image, Multispectral, SSIM

Abstract

This paper presents a multitemporal evaluation of topographic correction (TOC) methods based on synthetically generated images in order to evaluate the influence of solar angles on the performance of TOC methods. These synthetic images represent the radiance an optical sensor would receive for different periods of the year considering the real topography (SR image), and considering the relief completely horizontal (SH image). The comparison between the corrected image obtained applying a TOC method to a SR image and the SH image of the same area, i.e. considered the ideal correction, allows assessing the performance of each TOC algorithm, quantitatively measured through the Structural Similarity Index (SSIM).

Downloads

Download data is not yet available.

Author Biography

I. Sola, Universidad Pública de Navarra

Ivestigador. Departamento de Proyectos e Ingeniería Rural

References

Baraldi, A., Gironda, M., Simonetti, D., 2010. Operational Two-Stage Stratified Topographic Correction of Spaceborne Multispectral Imagery Employing an Automatic Spectral-Rule-Based Decision-Tree Preliminary Classifier. IEEE Trans. Geosci. Remote Sens., 48(1): 112-146. http://dx.doi.org/10.1109/TGRS.2009.2028017

Civco, D.L. 1989. Topographic Normalization of Landsat Thematic Mapper Digital Imagery. Photogramm. Eng. Remote S., 55: 1303-1309.

Dumortier, D. 1998. The satellight model of turbidity variations in Europe. Report for the 6th Satel-Light meeting. Freiburg, Germany.

Gao, Y.N., Zhang, W.C. 2007. Variable Empirical Coefficient Algorithm for removal of topographic effects on remotely sensed data from rugged terrain. In Proc.: IGARSS 2007, July 23-27, Barcelona, Spain, pp. 4733-4736. doi:10.1109/IGARSS.2007.4423917

Ghasemi, N., Mohammadzadeh, A., Reza Sahebi, M. 2011. Assessment of different topographic correction methods in ALOS AVNIR-2 data over a forest area. International Journal of Digital Earth, 1-17 D. doi:10.1080/17538947.2011.625049

Gu, D., Gillespie, A. 1998. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry. Remote Sensing of Environment, 64(2), 166-175. http://dx.doi.org/10.1016/S0034-4257(97)00177-6

Hay J.E., Mckay, D.C. 1985. Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies. International Journal of Solar Energy, 3(4-5), 203-240. http://dx.doi.org/10.1080/01425918508914395

Law, K.H., Nichol, J. 2004. Topographic correction for differential illumination effects on IKONOS satellite imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci., pp. 641-646.

Page, J. 1996. Algorithms for the Satellight programme. Technical Report for the 2nd SATEL-LIGHT meeting. June, 1996, Bergen, Norway.

Riano, D., Chuvieco, E., Salas, J., Aguado, I. 2003. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens., 41(5): 1056-1061. doi:10.1109/TGRS.2003.811693

Richter, R., Kellenberger, T., Kaufmann, H. 2009. Comparison of topographic correction methods. Remote Sensing, 1(3): 184-196. http://dx.doi.org/10.3390/rs1030184

Smith, J.A., Lin, T.L., Ranson, K.J. 1980. The Lambertian Assumption and Landsat Data. Photogrammetric Engineering & Remote Sensing, 46(9): 1183-1189

Soenen, S.A., Peddle, D.R., Coburn, C.A. 2005. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing, 43(9), 2148-2159. http://dx.doi.org/10.1109/TGRS.2005.852480

Sola, I., González-Audícana, M., Álvarez-Mozos, J., Torres, J.L. 2014. Synthetic images for evaluating Topographic Correction Algorithms. IEEE Trans. Geosci. Remote Sens., 52(3): 1799-1810. http://dx.doi.org/10.1109/TGRS.2013.2255296

Svoray, T., Carmel, Y. 2005. Empirical method for topographic correction in aerial photographs. IEEE Geosci. Remote Sens. Lett., 2(2): 211-214. doi:10.1109/LGRS.2005.846012

Teillet, P.M., Guindon, B., Goodenough, D.G. 1982. On the slope-aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8(2): 84-106.

Twele, A., Kappas, M., Lauer, J., Erasmi, S. 2006. The effect of stratified topographic correction on land cover classificacion in tropical mountainous regions ISPRS Comm. VII Symp., 8-11 May, Enschede, The Netherlands, pp. 432-437.

Tokola, T., Sarkeala, J., Van Der Linden, M. 2001. Use of topographic correction in Landsat TM-based forest interpretation in Nepal. International Journal of Remote Sensing, 22(4): 551-563. http://dx.doi.org/10.1080/01431160050505856

Vanonckelen, S., Lhermitte, S., Van Rompaey, A. 2013. The effect of atmospheric and topographic correction methods on land cover classification accuracy. International Journal of Applied Earth Observation and Geoinformation, 24(10): 9-21. http://dx.doi.org/10.1016/j.jag.2013.02.003

Wang, Z., Bovik, A.C. 2002. A Universal Image Quality Index. IEEE Signal Process. Lett., 9(3): 81-84. doi:10.1109/97.995823

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processsing, 13(4): 600-612. doi:10.1109/TIP.2003.819861

Published

2014-06-10

Issue

Section

Research articles