Assessment of the Kinematics of the Cuenca landslide in the central Peruvian Andes using photogrammetry and geodetic techniques
DOI:
https://doi.org/10.4995/raet.2024.21785Keywords:
Landslide monitoring, GNSS, Point Cloud, Photogrammetry, Cuenca (Peru)Abstract
Landslides represent a significant hazard in many mountainous regions, including the inter-Andean valleys of Peru. In this study, we evaluate the dynamics of the Cuenca landslide located in Huancavelica, central Peru, using photogrammetry and GNSS measurements. Interannual measurements were conducted at eight sites between 2016 and 2023 for GNSS, and two photogrammetric survey campaigns in 2023 to compare surface changes over time. The results show displacements ranging from 3.7 to 11.7 cm using the point cloud technique and from 2.7 to 15 cm through orthomosaic analysis, with both methods yielding consistent results. Displacements at points where GNSS measurements were taken are similar in magnitude but differ partially in direction. The study concludes that UAV techniques are applicable for analyzing landslide dynamics.
Downloads
References
Algorithms used in Photoscan. 2011. Agisoft. Recuperado 15 de abril de 2024, de https://www.agisoft.com/forum/index.php?topic=89.0
Arroyo-Solórzano, M., Quesada-Román A., BarrantesCastillo. 2022. Seismic and geomorphic assessment for coseismic landslides zonation in tropical volcanic contexts. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer; International Society for the Prevention and Mitigation of Natural Hazards, 114(3), pages 2811-2837, December. https://doi.org/10.1007/s11069-022-05492-8
Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M. 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3), 239-258. https://doi.org/10.1016/j.isprsjprs.2003.10.002
Berthier, E., Vadon, H., Baratoux, D., Arnaud, Y., Vincent, C., Feigl, K., Rémy, F., Legrésy, B. 2005. Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sensing of Environment, 95(1), 14-28. https://doi.org/10.1016/j.rse.2004.11.005
Beyer, R. A., Alexandrov, O., McMichael, S. 2018. The Ames Stereo Pipeline: NASA's Open Source Software for Deriving and Processing Terrain Data. Earth and Space Science, 5(9), 537-548. https://doi.org/10.1029/2018EA000409
Caine, N. 1980. The rainfall intensity - duration control of shallow landslides and debris flows. Geografiska Annaler: Series A, Physical Geography, 62(1-2), 23-27. https://doi.org/10.1080/04353676.1980.11879996
Carrión-Mero, P., Montalván-Burbano, N., MoranteCarballo, F., Quesada-Román, A., Apolo-Masache, B. 2021. Worldwide Research Trends in Landslide Science. International Journal of Environmental Research and Public Health, 18(18), 9445. https://doi.org/10.3390/ijerph18189445
Damian, R., Huaman, H. 2016. Estimación de umbrales de precipitación, para un sistema de alerta temprana en deslizamiento de laderas, en el distrito de Cuenca, provincia y región de Huancavelica. Universidad Nacional de Huancavelica.
Delacourt, C., Allemand, P., Casson, B., Vadon, H. 2004. Velocity field of the "La Clapière" landslide measured by the correlation of aerial and QuickBird satellite images. Geophysical Research Letters, 31(15). https://doi.org/10.1029/2004GL020193
Dietrich, W.E., Bellugi, D.G., Sklar, L.S., Stock, J.D., Heimsath, A.M. and Roering, J.J. 2003. In: Geomorphic transport laws for predicting landscape form and dynamics. American Geophysical Union, Washington D.C., 135, 2. https://doi.org/10.1029/135GM09
DiFrancesco, P.M., Bonneau, D., Hutchinson, D.J., 2020. The Implications of M3C2 Projection Diameter on 3D Semi-Automated Rockfall Extraction from Sequential Terrestrial Laser Scanning Point Clouds. Remote Sensing, 12, 1885. https://doi.org/10.3390/rs12111885
Froude, M.J., Petley, D. 2018 Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18, 2161-2181. https://doi.org/10.5194/nhess-18-2161-2018
Gao, B.C., 1996. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
Gili, J.A., Corominas, J., Rius, J. 2000. Using Global Positioning System techniques in landslide monitoring. Engineering Geology, 55(3), 167-192. https://doi.org/10.1016/S0013-7952(99)00127-1
Gojcic, Z Schmid, L Wieser, A. 2021. Dense 3D displacement vector fields for point cloud-based landslide monitoring. Landslides. 18, 3821-3832. https://doi.org/10.1007/s10346-021-01761-y
Granados-Bolaños, S., Quesada-Román A., Alvarado GE. 2020. Low-cost UAV applications in dynamics tropical volcanic landforms. Journal of Volcanology and Geothermal Research 410, 107143. https://doi.org/10.1016/j.jvolgeores.2020.107143
Greenway, D.R. 1987. Vegetation and slope stability. In M.G. Anderson K.S. Richards (Eds.), Slope Stability (pp. 187-230). New York: Wiley.
Greenwood, J.R., Norris, J.E., Wint, J. 2004. Assessing the contribution of vegetation to slope stability. Geotechnical Engineering, 157, GE4, 199-208. https://doi.org/10.1680/geng.2004.157.4.199
Herring, T.A., King, R.W. McClusky, S.C. 2010 GAMIT Reference Manual, GPS Analysis at MIT, Release 10.4. Department of Earth, Atmospheric and Planetary Sciences, Massachusset Institute of Technology, Cambridge, USA.
Hofmann et al. 1997. GPS:Theory and Practice. 4th revised ed., Springer Wien New York 389p.
Huang, G., Du, S., Wang, D. 2023. GNSS techniques for real-time monitoring of landslides: a review. Satellite Navigation, 4(1). Springer Science and Business Media LLC. https://doi.org/10.1186/s43020-023-00095-5
Instituto Geológico Minero y Metalúrgico. Dirección de Geología Ambiental y Riesgo Geológico (INGEMMET), 2014. Inspección Técnica Geológica en el Centro Poblado de Cuenca, Región Huancavelica, provincia de Huancavelica y distrito de Cuenca. LIMA: INGEMMET, Informe Técnico A6645, 31p.
Iverson, R.M. 2012. Elementary theory of bed-sediment entrainment by debris flows and avalanches. Journal of Geophysical Research, 117(F3), F03006. https://doi.org/10.1029/2011JF002189
Kang, Y., Lu, Z., Zhao, C., Zhang, Q., Kim, J., Niu, Y. 2019. Diagnosis of Xinmo (China) Landslide Based on Interferometric Synthetic Aperture Radar Observation and Modeling. Remote Sensing, 11(16), 1846. https://doi.org/10.3390/rs11161846
Kariminejad, N., Jafari, M., Domazetović, F., QuesadaRomán, A. 2024: An Overview of the Importance of DEM Resolution in Soil Erosion Assessment, Papers in Applied Geography, https://doi.org/10.1080/23754931.2024.2341165
Kumar, V., Jamir, I., Sundriyal, Y., Havenith, H.B., Gupta, V., Melo, R., Chauhan, N., Gupta, S.K., Rana, N. 2022. Landslide scaling relationship and its seismic-climatic implications, Himalaya, 10th International Conference on Geomorphology, Coimbra, Portugal, 12-16 Sep 2022, ICG2022-1. https://doi.org/10.5194/icg2022-1
Lacroix, P., Berthier, E., Maquerhua, E. T. 2015. Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sensing of Environment, 165, 148-158. https://doi.org/10.1016/j.rse.2015.05.010
Lague, D., Brodu, N., Leroux, J. 2013. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS J. Photogramm. Remote Sens., 82, 10-26. https://doi.org/10.1016/j.isprsjprs.2013.04.009
Leick, A., Li, J., Beser, J., Mader, J. 1995. Processing GLONASS carrier phase observations - theory and first experience -, Proc. ION GPS-95, Palm Springs, pp. 1041-1047.
Li, B., Jiang, W., Li, Y., Luo, Y., Qian, H., Wang, Y., Jiao, Q., Zhang, Q., Zhou, Z., Zhang, J. 2021. Monitoring and analysis of Woda landslide stability (China) combined with InSAR, GNSS and meteorological data. Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2021-101
Li, Y. 2021. Analysis of GAMIT/GLOBK in highprecision GNSS data processing for crustal deformation. Earthquake Research Advances, 1(3), 100028. https://doi.org/10.1016/j.eqrea.2021.100028
Millán-Arancibia, C., Lavado-Casimiro, W. 2023. Rainfall thresholds estimation for shallow landslides in Peru from gridded daily data. Natural Hazards and Earth System Sciences, 23(3), 1191-1206. https://doi.org/10.5194/nhess-23-1191-2023
Nikolakopoulos, K.G., Kyriou, A., Koukouvelas, I.K., Tomaras, N., Lyros, E. 2023. UAV, GNSS, and InSAR Data Analyses for Landslide Monitoring in a Mountainous Village in Western Greece. Remote Sensing, 15, 2870. https://doi.org/10.3390/rs15112870
Nuth, C., Kääb, A. 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1), 271-290. https://doi.org/10.5194/tc-5-271-2011
Petley, D. 2012. Global patterns of loss of life from landslides. Geology, 40(10), 927-930. https://doi.org/10.1130/G33217.1
Pohl, C., Van Genderen, J.L. 1998. Review article multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19(5), 823-854. https://doi.org/10.1080/014311698215748
Quispesivana, L., Navarro, P. 2003. Memoria descriptiva de la revisión y actualización de los cuadrángulos de Guadalupe(28-l), Huancapi (28-ñ), Chincheros (28- o), Castrovirreyna (27-m), San Miguel (27-o), Tupe (26-l), Conaica (26-m), Huarochirí (25-k), Yauyos (25-l) y Huancayo (25-m), Escala 1:100,000 - (Boletín: Serie A Carta Geológica) INGEMMET, Lima, Perú.
Sassa, K., Mikoš, M., Sassa, S., Bobrowsky, P.T., Takara, K., Dang, K. 2020. Understanding and reducing landslide disaster risk: volume 1 Sendai landslide partnerships and Kyoto Landslide Commitment, part III landslide-induced tsunamis. Springer Nature. pp 295-412. https://doi.org/10.1007/978-3-030-60196-6
Shean, D.E., Alexandrov, O., Moratto, Z.M., Smith, B.E., Joughin, I.R., Porter, C., Morin, P. 2016. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-highresolution commercial stereo satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 101-117. https://doi.org/10.1016/j.isprsjprs.2016.03.012
Smith, M.W., Vericat, D. 2015 From Experimental Plots to Experimental Landscapes: Topography, Erosion and Deposition in Sub-Humid Badlands from Structure-from-Motion Photogrammetry. Earth Surface Processes and Landforms, 40, 1656-1671. https://doi.org/10.1002/esp.3747
Villegas-Lanza, J.C., Chlieh, M., Cavalié, O., Tavera, H., Baby, P., Chire-Chira Nocquet, J.M. 2016. Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. Journal of Geophysical Research, 121, https://doi.org/10.1002/2016JB013080
Vivanco, S., Gómez, J. 2016. Caracterización Geológica-Geotécnica y Monitoreo Geodésico (DEM) del deslizamiento rotacional en el centro Poblado de Cuenca, Distrito de Cuenca, Provincia Huancavelica, región Huancavelica. INGEMMET. Congreso Peruano de Geología, 18, Resúmenes, 2016, Perú. https://app.ingemmet.gob.pe/biblioteca/pdf/CPG18-168.pdf
Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. 'Structure-fromMotion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
Yang, Y., Mei, G. 2021. Deep Transfer Learning Approach for Identifying Slope Surface Cracks. Applied Sciences, 11(23), 11193. https://doi.org/10.3390/app112311193
Zárate-Torres, B.A., El Hamdouni, R., Fernándezdel Castillo, T. 2021. GNSS and RPAS integration techniques for studying landslide dynamics: Application to the areas of Victoria and Colinas Lojanas, (Loja, Ecuador). Natural Hazards and Earth System Sciences Discussions, 2021, 1-36. https://doi.org/10.5194/nhess-2021-32
Zhou, J., Jiang, N., Li, C., Li, H. 2024. A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points, Journal of Rock Mechanics and Geotechnical Engineering, 2024. https://doi.org/10.1016/j.jrmge.2023.12.004
Zubiate, M., Madera, F. 2014. Inspección técnica geológico en el centro poblado de Cuenca: Región Huancavelica, provincia Huancavelica y distrito Cuenca (Informe técnico A6645). INGEMMET, Lima, Perú.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Wendy Quiroz, Juan Villegas-Lanza, Keiko Moroccoire, Oscar Balladares, Mijaell Berduzco
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
Funding data
-
Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica
Grant numbers Convenio 048- 2021 con el Instituto Geofísico del Perú