Assessment of the Kinematics of the Cuenca landslide in the central Peruvian Andes using photogrammetry and geodetic techniques

Authors

DOI:

https://doi.org/10.4995/raet.2024.21785

Keywords:

Landslide monitoring, GNSS, Point Cloud, Photogrammetry, Cuenca (Peru)

Abstract

Landslides represent a significant hazard in many mountainous regions, including the inter-Andean valleys of Peru. In this study, we evaluate the dynamics of the Cuenca landslide located in Huancavelica, central Peru, using photogrammetry and GNSS measurements. Interannual measurements were conducted at eight sites between 2016 and 2023 for GNSS, and two photogrammetric survey campaigns in 2023 to compare surface changes over time. The results show displacements ranging from 3.7 to 11.7 cm using the point cloud technique and from 2.7 to 15 cm through orthomosaic analysis, with both methods yielding consistent results. Displacements at points where GNSS measurements were taken are similar in magnitude but differ partially in direction. The study concludes that UAV techniques are applicable for analyzing landslide dynamics.

Downloads

Download data is not yet available.

Author Biographies

Wendy Quiroz, Instituto Geofísico del Perú

M.Sc. en Ciencias de la Tierra y Medio Ambiente en la Université Joseph Fourier de Francia. Licenciada en Estadística en la Universidad Nacional Federico Villarreal. Actualmente me desempeño como agregado de investigación en el Instituto Geofísico del Perú en el área de Geodesia Espacial, con amplia experiencia en la gestión de riesgos de desastres, tratamiento de señales sísmicas y el procesamiento de datos geodésicos.

Juan Villegas-Lanza, Instituto Geofísico del Perú

PhD in Earth and Universe Sciences, MSc in Earth and Environmental Sciences, both from the Université de Nice - Sophia Antipolis in France. Geophysical Engineer from the National University of San Agustín in Arequipa. Specialist in the study of the seismic cycle, crustal deformation, and volcano deformation using Space Geodesy tools (GNSS, InSAR), Photogrammetry, and Seismology, with published scientific works. Specialist in Disaster Risk Management. Currently a Scientific Researcher at the Geophysical Institute of Peru.

Keiko Moroccoire, Instituto Geofísico del Perú

Geophysical Engineer from the National University of San Agustín in Arequipa, Peru. I conducted geodesy and photogrammetry work during 2019 in private companies. Since 2020, I have been working at the Geophysical Institute of Peru as a research assistant in the Space Geodesy area. I have participated in the installation of permanent geodetic stations, as well as the acquisition, pre-processing, and processing of control point data to determine the state of deformation in Peru. Additionally, I have participated in projects such as the geodynamic, geophysical, and geological evaluation of landslides affecting the physical safety of the city of Huancabamba (Piura); Basic Research Project 2015-1, CONCYTEC – FONDECYT; and the Seismic-Geotechnical Zoning Study of the urban area of the Supe district using geophysical and geotechnical techniques, among others.

Oscar Balladares, Instituto Geofísico del Perú

Bachelor in Physics from the National University Pedro Ruiz Gallo of Lambayeque, Peru. Experienced in monumentation, installation, and measurement of temporary and permanent geodetic stations, as well as GPS data processing. Skilled in the application of geophysical methods (Electrical, Seismic), soil testing for geotechnical and hydrogeological purposes. My field of action focuses on the interdisciplinary use of geophysical, computational, and engineering techniques to determine subsurface conditions in the most optimal way, minimizing environmental impact. Research Assistant at the Geophysical Institute of Peru.

Mijaell Berduzco, Instituto Geofísico del Perú

Bachelor in Geophysical Sciences from the National University of San Agustín de Arequipa, Peru. I am currently working at the Geophysical Institute of Peru as a research assistant. I have experiencie in the installation of permanent geodetic stations, gravimetric measurements, national photogrammetry projects, and the pre-processing and processing of geodetic data.

References

Algorithms used in Photoscan. 2011. Agisoft. Recuperado 15 de abril de 2024, de https://www.agisoft.com/forum/index.php?topic=89.0

Arroyo-Solórzano, M., Quesada-Román A., BarrantesCastillo. 2022. Seismic and geomorphic assessment for coseismic landslides zonation in tropical volcanic contexts. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer; International Society for the Prevention and Mitigation of Natural Hazards, 114(3), pages 2811-2837, December. https://doi.org/10.1007/s11069-022-05492-8

Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M. 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3), 239-258. https://doi.org/10.1016/j.isprsjprs.2003.10.002

Berthier, E., Vadon, H., Baratoux, D., Arnaud, Y., Vincent, C., Feigl, K., Rémy, F., Legrésy, B. 2005. Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sensing of Environment, 95(1), 14-28. https://doi.org/10.1016/j.rse.2004.11.005

Beyer, R. A., Alexandrov, O., McMichael, S. 2018. The Ames Stereo Pipeline: NASA's Open Source Software for Deriving and Processing Terrain Data. Earth and Space Science, 5(9), 537-548. https://doi.org/10.1029/2018EA000409

Caine, N. 1980. The rainfall intensity - duration control of shallow landslides and debris flows. Geografiska Annaler: Series A, Physical Geography, 62(1-2), 23-27. https://doi.org/10.1080/04353676.1980.11879996

Carrión-Mero, P., Montalván-Burbano, N., MoranteCarballo, F., Quesada-Román, A., Apolo-Masache, B. 2021. Worldwide Research Trends in Landslide Science. International Journal of Environmental Research and Public Health, 18(18), 9445. https://doi.org/10.3390/ijerph18189445

Damian, R., Huaman, H. 2016. Estimación de umbrales de precipitación, para un sistema de alerta temprana en deslizamiento de laderas, en el distrito de Cuenca, provincia y región de Huancavelica. Universidad Nacional de Huancavelica.

Delacourt, C., Allemand, P., Casson, B., Vadon, H. 2004. Velocity field of the "La Clapière" landslide measured by the correlation of aerial and QuickBird satellite images. Geophysical Research Letters, 31(15). https://doi.org/10.1029/2004GL020193

Dietrich, W.E., Bellugi, D.G., Sklar, L.S., Stock, J.D., Heimsath, A.M. and Roering, J.J. 2003. In: Geomorphic transport laws for predicting landscape form and dynamics. American Geophysical Union, Washington D.C., 135, 2. https://doi.org/10.1029/135GM09

DiFrancesco, P.M., Bonneau, D., Hutchinson, D.J., 2020. The Implications of M3C2 Projection Diameter on 3D Semi-Automated Rockfall Extraction from Sequential Terrestrial Laser Scanning Point Clouds. Remote Sensing, 12, 1885. https://doi.org/10.3390/rs12111885

Froude, M.J., Petley, D. 2018 Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18, 2161-2181. https://doi.org/10.5194/nhess-18-2161-2018

Gao, B.C., 1996. NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3

Gili, J.A., Corominas, J., Rius, J. 2000. Using Global Positioning System techniques in landslide monitoring. Engineering Geology, 55(3), 167-192. https://doi.org/10.1016/S0013-7952(99)00127-1

Gojcic, Z Schmid, L Wieser, A. 2021. Dense 3D displacement vector fields for point cloud-based landslide monitoring. Landslides. 18, 3821-3832. https://doi.org/10.1007/s10346-021-01761-y

Granados-Bolaños, S., Quesada-Román A., Alvarado GE. 2020. Low-cost UAV applications in dynamics tropical volcanic landforms. Journal of Volcanology and Geothermal Research 410, 107143. https://doi.org/10.1016/j.jvolgeores.2020.107143

Greenway, D.R. 1987. Vegetation and slope stability. In M.G. Anderson K.S. Richards (Eds.), Slope Stability (pp. 187-230). New York: Wiley.

Greenwood, J.R., Norris, J.E., Wint, J. 2004. Assessing the contribution of vegetation to slope stability. Geotechnical Engineering, 157, GE4, 199-208. https://doi.org/10.1680/geng.2004.157.4.199

Herring, T.A., King, R.W. McClusky, S.C. 2010 GAMIT Reference Manual, GPS Analysis at MIT, Release 10.4. Department of Earth, Atmospheric and Planetary Sciences, Massachusset Institute of Technology, Cambridge, USA.

Hofmann et al. 1997. GPS:Theory and Practice. 4th revised ed., Springer Wien New York 389p.

Huang, G., Du, S., Wang, D. 2023. GNSS techniques for real-time monitoring of landslides: a review. Satellite Navigation, 4(1). Springer Science and Business Media LLC. https://doi.org/10.1186/s43020-023-00095-5

Instituto Geológico Minero y Metalúrgico. Dirección de Geología Ambiental y Riesgo Geológico (INGEMMET), 2014. Inspección Técnica Geológica en el Centro Poblado de Cuenca, Región Huancavelica, provincia de Huancavelica y distrito de Cuenca. LIMA: INGEMMET, Informe Técnico A6645, 31p.

Iverson, R.M. 2012. Elementary theory of bed-sediment entrainment by debris flows and avalanches. Journal of Geophysical Research, 117(F3), F03006. https://doi.org/10.1029/2011JF002189

Kang, Y., Lu, Z., Zhao, C., Zhang, Q., Kim, J., Niu, Y. 2019. Diagnosis of Xinmo (China) Landslide Based on Interferometric Synthetic Aperture Radar Observation and Modeling. Remote Sensing, 11(16), 1846. https://doi.org/10.3390/rs11161846

Kariminejad, N., Jafari, M., Domazetović, F., QuesadaRomán, A. 2024: An Overview of the Importance of DEM Resolution in Soil Erosion Assessment, Papers in Applied Geography, https://doi.org/10.1080/23754931.2024.2341165

Kumar, V., Jamir, I., Sundriyal, Y., Havenith, H.B., Gupta, V., Melo, R., Chauhan, N., Gupta, S.K., Rana, N. 2022. Landslide scaling relationship and its seismic-climatic implications, Himalaya, 10th International Conference on Geomorphology, Coimbra, Portugal, 12-16 Sep 2022, ICG2022-1. https://doi.org/10.5194/icg2022-1

Lacroix, P., Berthier, E., Maquerhua, E. T. 2015. Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sensing of Environment, 165, 148-158. https://doi.org/10.1016/j.rse.2015.05.010

Lague, D., Brodu, N., Leroux, J. 2013. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS J. Photogramm. Remote Sens., 82, 10-26. https://doi.org/10.1016/j.isprsjprs.2013.04.009

Leick, A., Li, J., Beser, J., Mader, J. 1995. Processing GLONASS carrier phase observations - theory and first experience -, Proc. ION GPS-95, Palm Springs, pp. 1041-1047.

Li, B., Jiang, W., Li, Y., Luo, Y., Qian, H., Wang, Y., Jiao, Q., Zhang, Q., Zhou, Z., Zhang, J. 2021. Monitoring and analysis of Woda landslide stability (China) combined with InSAR, GNSS and meteorological data. Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2021-101

Li, Y. 2021. Analysis of GAMIT/GLOBK in highprecision GNSS data processing for crustal deformation. Earthquake Research Advances, 1(3), 100028. https://doi.org/10.1016/j.eqrea.2021.100028

Millán-Arancibia, C., Lavado-Casimiro, W. 2023. Rainfall thresholds estimation for shallow landslides in Peru from gridded daily data. Natural Hazards and Earth System Sciences, 23(3), 1191-1206. https://doi.org/10.5194/nhess-23-1191-2023

Nikolakopoulos, K.G., Kyriou, A., Koukouvelas, I.K., Tomaras, N., Lyros, E. 2023. UAV, GNSS, and InSAR Data Analyses for Landslide Monitoring in a Mountainous Village in Western Greece. Remote Sensing, 15, 2870. https://doi.org/10.3390/rs15112870

Nuth, C., Kääb, A. 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere, 5(1), 271-290. https://doi.org/10.5194/tc-5-271-2011

Petley, D. 2012. Global patterns of loss of life from landslides. Geology, 40(10), 927-930. https://doi.org/10.1130/G33217.1

Pohl, C., Van Genderen, J.L. 1998. Review article multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19(5), 823-854. https://doi.org/10.1080/014311698215748

Quispesivana, L., Navarro, P. 2003. Memoria descriptiva de la revisión y actualización de los cuadrángulos de Guadalupe(28-l), Huancapi (28-ñ), Chincheros (28- o), Castrovirreyna (27-m), San Miguel (27-o), Tupe (26-l), Conaica (26-m), Huarochirí (25-k), Yauyos (25-l) y Huancayo (25-m), Escala 1:100,000 - (Boletín: Serie A Carta Geológica) INGEMMET, Lima, Perú.

Sassa, K., Mikoš, M., Sassa, S., Bobrowsky, P.T., Takara, K., Dang, K. 2020. Understanding and reducing landslide disaster risk: volume 1 Sendai landslide partnerships and Kyoto Landslide Commitment, part III landslide-induced tsunamis. Springer Nature. pp 295-412. https://doi.org/10.1007/978-3-030-60196-6

Shean, D.E., Alexandrov, O., Moratto, Z.M., Smith, B.E., Joughin, I.R., Porter, C., Morin, P. 2016. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-highresolution commercial stereo satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 101-117. https://doi.org/10.1016/j.isprsjprs.2016.03.012

Smith, M.W., Vericat, D. 2015 From Experimental Plots to Experimental Landscapes: Topography, Erosion and Deposition in Sub-Humid Badlands from Structure-from-Motion Photogrammetry. Earth Surface Processes and Landforms, 40, 1656-1671. https://doi.org/10.1002/esp.3747

Villegas-Lanza, J.C., Chlieh, M., Cavalié, O., Tavera, H., Baby, P., Chire-Chira Nocquet, J.M. 2016. Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. Journal of Geophysical Research, 121, https://doi.org/10.1002/2016JB013080

Vivanco, S., Gómez, J. 2016. Caracterización Geológica-Geotécnica y Monitoreo Geodésico (DEM) del deslizamiento rotacional en el centro Poblado de Cuenca, Distrito de Cuenca, Provincia Huancavelica, región Huancavelica. INGEMMET. Congreso Peruano de Geología, 18, Resúmenes, 2016, Perú. https://app.ingemmet.gob.pe/biblioteca/pdf/CPG18-168.pdf

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M. 2012. 'Structure-fromMotion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021

Yang, Y., Mei, G. 2021. Deep Transfer Learning Approach for Identifying Slope Surface Cracks. Applied Sciences, 11(23), 11193. https://doi.org/10.3390/app112311193

Zárate-Torres, B.A., El Hamdouni, R., Fernándezdel Castillo, T. 2021. GNSS and RPAS integration techniques for studying landslide dynamics: Application to the areas of Victoria and Colinas Lojanas, (Loja, Ecuador). Natural Hazards and Earth System Sciences Discussions, 2021, 1-36. https://doi.org/10.5194/nhess-2021-32

Zhou, J., Jiang, N., Li, C., Li, H. 2024. A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points, Journal of Rock Mechanics and Geotechnical Engineering, 2024. https://doi.org/10.1016/j.jrmge.2023.12.004

Zubiate, M., Madera, F. 2014. Inspección técnica geológico en el centro poblado de Cuenca: Región Huancavelica, provincia Huancavelica y distrito Cuenca (Informe técnico A6645). INGEMMET, Lima, Perú.

Published

2024-07-29

Issue

Section

Research articles

Funding data