Supervised classification, multi-criteria assessment and location-allocation models of Cistus ladanifer essential oil distillation industries

Authors

DOI:

https://doi.org/10.4995/raet.2024.21700

Keywords:

Cistus ladanifer, essential oil, supervised classification, multi-criteria evaluation, location-allocation

Abstract

Cistus ladanifer L. (rockrose) is a shrub species widespread in the Mediterranean region and highly valuable for the cosmetic, pharmacological and agri-food industries. Despite its value, this resource remains under-exploited and presents great spatial variability and heterogeneous extraction conditions. This study aims to develop a methodology to locate optimal areas for the installation of C. ladanifer essential oil distillation plants that will allow its extraction in an efficient and profitable way. Remote sensing techniques based on supervised classifications of pixels and objects have been applied to determine the distribution and surface of this resource. The classification was conducted using 2018 Sentinel-2 imagery, digital elevation models and the following six classification algorithms: minimum distance, Mahalanobis distance, maximum likelihood, Spectral Angle Mapper, support vector machines and neural networks. GIS tools such as multi-criteria evaluation analysis and location- allocation models allowed us to obtain and connect the supply points with the highest resource suitability and the ideal demand sites for the facilities. Maximum likelihood, support vector machines and neural networks classifiers achieved classification accuracies above 90 % in overall accuracy and Kappa coefficient. The total area of potentially exploitable rockrose obtained in the classification was 20 889 ha, from which 15 241 ha (72.96 %) were viable for harvesting. The installation of two distillation plants showed an efficient spatial coverage distribution to exploit this resource in the study area. The methodology is considered a valuable tool to efficiently and sustainably determine the optimal location of distillation plants.

Downloads

Download data is not yet available.

Author Biographies

Carlos Pérez-Izquierdo, Universidad de Extremadura

Instituto de Investigación de la Dehesa (INDEHESA)

Fernando Pulido, Universidad de Extremadura

Instituto de Investigación de la Dehesa (INDEHESA)

References

Akca, M. S., Sarikaya, O.V., Doker, M. F., Ocak, F., Kirlangicoglu, C., Karaaslan, Y., Satoglu, S.I., Altinbas, M. 2023. A detailed GIS based assessment of bioenergy plant locations using location-allocation algorithm. Applied Energy, 352(August), 121932. https://doi.org/10.1016/j.apenergy.2023.121932

Alves-Ferreira, J., Duarte, L. C., Lourenço, A., Roseiro, L. B., Fernandes, M. C., Pereira, H., & Carvalheiro, F. (2019). Distillery Residues from Cistus ladanifer (Rockrose) as Feedstock for the Production of Added-Value Phenolic Compounds and Hemicellulosic Oligosaccharides. BioEnergy Research, 12(2), 347-358. https://doi.org/10.1007/s12155-019-09975-8

Arenas, S., Haeger, J., Jordano, D. 2011. Aplicación de técnicas de teledetección y GIS sobre imágenes Quickbird para identificar y mapear individuos de peral silvestre (Pyrus bourgeana) en bosque esclerófilo mediterráneo. Revista de Teledetección, 35, 55–71.

Barrajón-Catalán, E., Tomás-Menor, L., Morales-Soto, A., Bruñá, N. M., López, D. S., Segura-Carretero, A., & Micol, V. (2015). Rockroses (Cistus sp.) Oils. In Essential Oils in Food Preservation, Flavor and Safety. Elsevier Inc. https://doi.org/10.1016/B978-0-12-416641-7.00074-2

Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204(October), 509-523. https://doi.org/10.1016/j.rse.2017.10.005

Borràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., & Camps-Valls, G. (2017). Clasificación de usos del suelo a partir de imágenes Sentinel-2. Revista de Teledetección, 2017(48), 55. https://doi.org/10.4995/raet.2017.7133

Calvao, T., Palmeirim, J. M. 2004. Mapping Mediterranean scrub with satellite imagery: Biomass estimation and spectral behaviour. International Journal of Remote Sensing, 25(16), 3113-3126. https://doi.org/10.1080/01431160310001654978

Castillejo-González, I. L. (2018). Mapping of olive trees using pansharpened Quickbird images: An evaluation of pixel- And object-based analyses. Agronomy, 8(12). https://doi.org/10.3390/agronomy8120288

Castillejo-González, I. L., Peña-Barragán, J. M., Jurado-Expósito, M., Mesas-Carrascosa, F. J., & López-Granados, F. (2014). Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management. European Journal of Agronomy, 59, 57-66. https://doi.org/10.1016/j.eja.2014.05.009

Chuvieco, E. (2009). Fundamentals of Satellite Remote Sensing. In A. Huete (Ed.), Springer Water. CRC Press. https://doi.org/10.1201/b18954

Cohen J.A. 1960. Coefficient of agreement for nominal scales. Educ. Psychol. Meas., 20(1), 37-46. https://doi.org/10.1177/001316446002000104

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46. https://doi.org/10.1016/0034-4257(91)90048-B

Delgado, R., Tibau, X.-A. 2019. Why Cohen's Kappa should be avoided as performance measure in classification. PLOS ONE, 14(9), e0222916. https://doi.org/10.1371/journal.pone.0222916

Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, 29(4), 1185-1206. https://doi.org/10.1080/01431160701294661

Drǎguţ, L., Tiede, D., Levick, S.R. 2010. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24(6), 859-871. https://doi.org/10.1080/13658810903174803

Drǎguţ, L., Csillik, O., Eisank, C., Tiede, D. 2014. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 119-127. https://doi.org/10.1016/j.isprsjprs.2013.11.018

Esteban, L. S., Carrasco, J. E. 2011. Biomass resources and costs: Assessment in different EU countries. Biomass and Bioenergy, 35(SUPPL. 1), S21-S30. https://doi.org/10.1016/j.biombioe.2011.03.045

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4

Foody, G. M., Campbell, N.A., Trodd, N. M., Wood, T. F. 1992. Derivation and applications of probabilistic measures of class membership from the maximumlikelihood classification. Photogrammetric Engineering & Remote Sensing, 58(9), 1335-1341

Frazão, D. F., Raimundo, J. R., Domingues, J. L., Quintela-Sabarís, C., Gonçalves, J. C., & Delgado, F. (2018). Cistus ladanifer (Cistaceae): a natural resource in Mediterranean-type ecosystems. Planta, 247(2), 289-300. https://doi.org/10.1007/s00425-017-2825-2

García Martín, A., García Galindo, D., Pascual, J., Riva Fernández, J., Pérez Cabello, F., & Montorio Llovería, R. (2011). Determinación de zonas adecuadas para la extracción de biomasa residual forestal en la provincia de Teruel mediante SIG y teledetección. Geofocus: Revista Internacional de Ciencia y Tecnología de La Información Geográfica, 11, 19-50.

Heumann, B.W. 2011. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree-Support Vector Machine Approach. Remote Sensing, 3(11), 2440-2460. https://doi.org/10.3390/rs3112440

Kaplan, G., & Avdan, U. (2017). Object-based water body extraction model using Sentinel-2 satellite imagery. European Journal of Remote Sensing, 50(1), 137-143. https://doi.org/10.1080/22797254.2017.1297540

Kühmaier, M., Kanzian, C., Stampfer, K. 2014. Identification of potential energy wood terminal locations using a spatial multicriteria decision analysis. Biomass and Bioenergy, 66, 337-347. https://doi.org/10.1016/j.biombioe.2014.03.048

Kumar, A., Sokhansanj, S., & Flynn, P. C. (2006). Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems. Applied Biochemistry and Biotechnology, 129(1-3), 71-87. https://doi.org/10.1385/ABAB:129:1:71

Lu, D., Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. https://doi.org/10.1080/01431160600746456

Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y. 2017. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry. https://doi.org/10.1016/j.isprsjprs.2017.06.001

Malladi, K. T., & Sowlati, T. (2018). Biomass logistics: A review of important features, optimization modeling and the new trends. Renewable and Sustainable Energy Reviews, 94(January), 587-599. https://doi.org/10.1016/j.rser.2018.06.052

Malczewski, J. 2006. GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703-726. https://doi.org/10.1080/13658810600661508

Mediavilla, I., Blázquez, M. A., Ruiz, A., & Esteban, L. S. (2021). Influence of the Storage of Cistus ladanifer L. Bales from Mechanised Harvesting on the Essential Oil Yield and Qualitative Composition. Molecules, 26(8), 2379. https://doi.org/10.3390/molecules26082379

Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275-293. https://doi.org/10.1016/0304-3800(92)90003-W

Pande-Chhetri, R., Abd-Elrahman, A., Liu, T., Morton, J., & Wilhelm, V. L. (2017). Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. European Journal of Remote Sensing, 50(1), 564-576. https://doi.org/10.1080/22797254.2017.1373602

Pérez-Izquierdo, C., Serrano-Pérez, P., & Rodríguez-Molina, M. del C. (2022). Chemical composition, antifungal and phytotoxic activities of Cistus ladanifer L. essential oil and hydrolate. Biocatalysis and Agricultural Biotechnology, 45(October 2021), 102527. https://doi.org/10.1016/j.bcab.2022.102527

Pérez-Izquierdo, C., Jordán Bueso, M.J., del Carmen Rodríguez-Molina, M., Pulido, F. 2023. Spatial Variation in Yield, Chemical Composition, and Phytotoxic Activity of Cistus ladanifer Essential Oils. Chemistry and Biodiversity, 20(11). https://doi.org/10.1002/cbdv.202300995

Pérez-Izquierdo, C., Bueso, M.J.J., Serrano-Pérez, P., Rodríguez-Molina, M. del C., Pulido, F. 2024. Unravelling the impact of plant ontogenic factors on the content and phytotoxic potential of Cistus ladanifer L. (rockrose) essential oils. Scientia Horticulturae, 331(2023). https://doi.org/10.1016/j.scienta.2024.113127

Perpiña, C., Martínez-Llario, J.C., Pérez-Navarro, Á. 2013. Multicriteria assessment in GIS environments for siting biomass plants. Land Use Policy, 31, 326-335. https://doi.org/10.1016/j.landusepol.2012.07.014

Piramanayagam, S., Saber, E., Schwartzkopf, W., Koehler, F.W. 2018. Supervised classification of multisensor remotely sensed images using a deep learning framework. Remote Sensing, 10(9), 1-25. https://doi.org/10.3390/rs10091429

Richards, J. A., & Jia, X. (1999). Remote Sensing Digital Image Analysis. In Remote Sensing Digital Image Analysis. https://doi.org/10.1007/978-3-662-03978-6

Rodríguez-Valero, M.I., Alonso-Sarria, F. 2019. Classification of landsat 8 images in the segura hydrographic demarcation. Revista de Teledeteccion, 53, 33-44. https://doi.org/10.4995/raet.2019.11016

Rouse, J.W., Hass, R. H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, 1, 309-317.

Silva, S., Alçada-Almeida, L., Dias, L.C. 2014. Biogas plants site selection integrating Multicriteria Decision Aid methods and GIS techniques: A case study in a Portuguese region. Biomass and Bioenergy, 71, 58-68. https://doi.org/10.1016/j.biombioe.2014.10.025

Smits, P. C., Dellepiane, S. G., & Schowengerdt, R. A. (1999). Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. International Journal of Remote Sensing, 20(8), 1461-1486. https://doi.org/10.1080/014311699212560

Sultana, A., Kumar, A. 2012. Optimal siting and size of bioenergy facilities using geographic information system. Applied Energy, 94, 192-201. https://doi.org/10.1016/j.apenergy.2012.01.052

Szostak, M., Hawryło, P., & Piela, D. (2018). Using of Sentinel-2 images for automation of the forest succession detection. European Journal of Remote Sensing, 51(1), 142-149. https://doi.org/10.1080/22797254.2017.1412272

Tavares, C. S., Martins, A., Faleiro, M. L., Miguel, M. G., Duarte, L. C., Gameiro, J. A., Roseiro, L. B., & Figueiredo, A. C. (2020). Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Industrial Crops and Products, 144(December 2019), 112034. https://doi.org/10.1016/j.indcrop.2019.112034

Thomas, V., Treitz, P., Jelinski, D., Miller, J., Lafleur, P., & McCaughey, J. H. (2003). Image classification of a northern peatland complex using spectral and plant community data. Remote Sensing of Environment, 84(1), 83-99. https://doi.org/10.1016/S0034-4257(02)00099-8

Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating Methodologies for Scaling Landcover Classifications from Site-Specific to Global. Remote Sensing of Environment, 70(1), 16-28. https://doi.org/10.1016/S0034-4257(99)00055-3

Tobar-Díaz, R., Gao, Y., Mas, J. F., & Cambrón-Sandoval, V. H. (2023). Classification of land use and land cover through machine learning algorithms: a literature review. Revista de Teledeteccion, 2023(62), 1-19. https://doi.org/10.4995/raet.2023.19014

Tucker, C.J., Sellers, P.J. 1986. Satellite remote sensing of primary production. International Journal of Remote Sensing, 7(11), 1395-1416. https://doi.org/10.1080/01431168608948944

Vélez-Alvarado, D. A., & Álvarez-Mozos, J. (2020). Clasificación de usos y cubiertas del suelo y análisis de cambios en los alrededores de la Reserva Ecológica Manglares Churute (Ecuador) mediante una serie de imágenes Sentinel-1. Revista de Teledetección, 56, 131. https://doi.org/10.4995/raet.2020.14099

Wang, L., Sousa, W. P., Gong, P. 2004. Integration of objectbased and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25(24), 5655-5668. https://doi.org/10.1080/014311602331291215

Whiteside, T. G., Boggs, G. S., & Maier, S. W. (2011). Comparing object-based and pixel-based classifications for mapping savannas. International Journal of Applied Earth Observation and Geoinformation, 13(6), 884-893. https://doi.org/10.1016/j.jag.2011.06.008

Woo, H., Acuna, M., Moroni, M., Taskhiri, M. S., Turner, P. 2018. Optimizing the location of biomass energy facilities by integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests, 9(10), 1-15. https://doi.org/10.3390/f9100585

Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., Liu, S., Yu, L., Wang, X., Zhu, P., Li, X., Xu, Y., Li, C., Fu, W., Li, X., Li, W., Liu, C., Cong, N., Zhang, H., Gong, P. 2014. Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal of Remote Sensing, 35(13), 4573-4588. https://doi.org/10.1080/01431161.2014.930206

Published

2024-07-29

Issue

Section

Research articles

Funding data