Supervised classification, multi-criteria assessment and location-allocation models of Cistus ladanifer essential oil distillation industries
DOI:
https://doi.org/10.4995/raet.2024.21700Keywords:
Cistus ladanifer, essential oil, supervised classification, multi-criteria evaluation, location-allocationAbstract
Cistus ladanifer L. (rockrose) is a shrub species widespread in the Mediterranean region and highly valuable for the cosmetic, pharmacological and agri-food industries. Despite its value, this resource remains under-exploited and presents great spatial variability and heterogeneous extraction conditions. This study aims to develop a methodology to locate optimal areas for the installation of C. ladanifer essential oil distillation plants that will allow its extraction in an efficient and profitable way. Remote sensing techniques based on supervised classifications of pixels and objects have been applied to determine the distribution and surface of this resource. The classification was conducted using 2018 Sentinel-2 imagery, digital elevation models and the following six classification algorithms: minimum distance, Mahalanobis distance, maximum likelihood, Spectral Angle Mapper, support vector machines and neural networks. GIS tools such as multi-criteria evaluation analysis and location- allocation models allowed us to obtain and connect the supply points with the highest resource suitability and the ideal demand sites for the facilities. Maximum likelihood, support vector machines and neural networks classifiers achieved classification accuracies above 90 % in overall accuracy and Kappa coefficient. The total area of potentially exploitable rockrose obtained in the classification was 20 889 ha, from which 15 241 ha (72.96 %) were viable for harvesting. The installation of two distillation plants showed an efficient spatial coverage distribution to exploit this resource in the study area. The methodology is considered a valuable tool to efficiently and sustainably determine the optimal location of distillation plants.
Downloads
References
Akca, M. S., Sarikaya, O.V., Doker, M. F., Ocak, F., Kirlangicoglu, C., Karaaslan, Y., Satoglu, S.I., Altinbas, M. 2023. A detailed GIS based assessment of bioenergy plant locations using location-allocation algorithm. Applied Energy, 352(August), 121932. https://doi.org/10.1016/j.apenergy.2023.121932
Alves-Ferreira, J., Duarte, L. C., Lourenço, A., Roseiro, L. B., Fernandes, M. C., Pereira, H., & Carvalheiro, F. (2019). Distillery Residues from Cistus ladanifer (Rockrose) as Feedstock for the Production of Added-Value Phenolic Compounds and Hemicellulosic Oligosaccharides. BioEnergy Research, 12(2), 347-358. https://doi.org/10.1007/s12155-019-09975-8
Arenas, S., Haeger, J., Jordano, D. 2011. Aplicación de técnicas de teledetección y GIS sobre imágenes Quickbird para identificar y mapear individuos de peral silvestre (Pyrus bourgeana) en bosque esclerófilo mediterráneo. Revista de Teledetección, 35, 55–71.
Barrajón-Catalán, E., Tomás-Menor, L., Morales-Soto, A., Bruñá, N. M., López, D. S., Segura-Carretero, A., & Micol, V. (2015). Rockroses (Cistus sp.) Oils. In Essential Oils in Food Preservation, Flavor and Safety. Elsevier Inc. https://doi.org/10.1016/B978-0-12-416641-7.00074-2
Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204(October), 509-523. https://doi.org/10.1016/j.rse.2017.10.005
Borràs, J., Delegido, J., Pezzola, A., Pereira, M., Morassi, G., & Camps-Valls, G. (2017). Clasificación de usos del suelo a partir de imágenes Sentinel-2. Revista de Teledetección, 2017(48), 55. https://doi.org/10.4995/raet.2017.7133
Calvao, T., Palmeirim, J. M. 2004. Mapping Mediterranean scrub with satellite imagery: Biomass estimation and spectral behaviour. International Journal of Remote Sensing, 25(16), 3113-3126. https://doi.org/10.1080/01431160310001654978
Castillejo-González, I. L. (2018). Mapping of olive trees using pansharpened Quickbird images: An evaluation of pixel- And object-based analyses. Agronomy, 8(12). https://doi.org/10.3390/agronomy8120288
Castillejo-González, I. L., Peña-Barragán, J. M., Jurado-Expósito, M., Mesas-Carrascosa, F. J., & López-Granados, F. (2014). Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management. European Journal of Agronomy, 59, 57-66. https://doi.org/10.1016/j.eja.2014.05.009
Chuvieco, E. (2009). Fundamentals of Satellite Remote Sensing. In A. Huete (Ed.), Springer Water. CRC Press. https://doi.org/10.1201/b18954
Cohen J.A. 1960. Coefficient of agreement for nominal scales. Educ. Psychol. Meas., 20(1), 37-46. https://doi.org/10.1177/001316446002000104
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35-46. https://doi.org/10.1016/0034-4257(91)90048-B
Delgado, R., Tibau, X.-A. 2019. Why Cohen's Kappa should be avoided as performance measure in classification. PLOS ONE, 14(9), e0222916. https://doi.org/10.1371/journal.pone.0222916
Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, 29(4), 1185-1206. https://doi.org/10.1080/01431160701294661
Drǎguţ, L., Tiede, D., Levick, S.R. 2010. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24(6), 859-871. https://doi.org/10.1080/13658810903174803
Drǎguţ, L., Csillik, O., Eisank, C., Tiede, D. 2014. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 119-127. https://doi.org/10.1016/j.isprsjprs.2013.11.018
Esteban, L. S., Carrasco, J. E. 2011. Biomass resources and costs: Assessment in different EU countries. Biomass and Bioenergy, 35(SUPPL. 1), S21-S30. https://doi.org/10.1016/j.biombioe.2011.03.045
Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4
Foody, G. M., Campbell, N.A., Trodd, N. M., Wood, T. F. 1992. Derivation and applications of probabilistic measures of class membership from the maximumlikelihood classification. Photogrammetric Engineering & Remote Sensing, 58(9), 1335-1341
Frazão, D. F., Raimundo, J. R., Domingues, J. L., Quintela-Sabarís, C., Gonçalves, J. C., & Delgado, F. (2018). Cistus ladanifer (Cistaceae): a natural resource in Mediterranean-type ecosystems. Planta, 247(2), 289-300. https://doi.org/10.1007/s00425-017-2825-2
García Martín, A., García Galindo, D., Pascual, J., Riva Fernández, J., Pérez Cabello, F., & Montorio Llovería, R. (2011). Determinación de zonas adecuadas para la extracción de biomasa residual forestal en la provincia de Teruel mediante SIG y teledetección. Geofocus: Revista Internacional de Ciencia y Tecnología de La Información Geográfica, 11, 19-50.
Heumann, B.W. 2011. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree-Support Vector Machine Approach. Remote Sensing, 3(11), 2440-2460. https://doi.org/10.3390/rs3112440
Kaplan, G., & Avdan, U. (2017). Object-based water body extraction model using Sentinel-2 satellite imagery. European Journal of Remote Sensing, 50(1), 137-143. https://doi.org/10.1080/22797254.2017.1297540
Kühmaier, M., Kanzian, C., Stampfer, K. 2014. Identification of potential energy wood terminal locations using a spatial multicriteria decision analysis. Biomass and Bioenergy, 66, 337-347. https://doi.org/10.1016/j.biombioe.2014.03.048
Kumar, A., Sokhansanj, S., & Flynn, P. C. (2006). Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems. Applied Biochemistry and Biotechnology, 129(1-3), 71-87. https://doi.org/10.1385/ABAB:129:1:71
Lu, D., Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. https://doi.org/10.1080/01431160600746456
Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y. 2017. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry. https://doi.org/10.1016/j.isprsjprs.2017.06.001
Malladi, K. T., & Sowlati, T. (2018). Biomass logistics: A review of important features, optimization modeling and the new trends. Renewable and Sustainable Energy Reviews, 94(January), 587-599. https://doi.org/10.1016/j.rser.2018.06.052
Malczewski, J. 2006. GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703-726. https://doi.org/10.1080/13658810600661508
Mediavilla, I., Blázquez, M. A., Ruiz, A., & Esteban, L. S. (2021). Influence of the Storage of Cistus ladanifer L. Bales from Mechanised Harvesting on the Essential Oil Yield and Qualitative Composition. Molecules, 26(8), 2379. https://doi.org/10.3390/molecules26082379
Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275-293. https://doi.org/10.1016/0304-3800(92)90003-W
Pande-Chhetri, R., Abd-Elrahman, A., Liu, T., Morton, J., & Wilhelm, V. L. (2017). Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. European Journal of Remote Sensing, 50(1), 564-576. https://doi.org/10.1080/22797254.2017.1373602
Pérez-Izquierdo, C., Serrano-Pérez, P., & Rodríguez-Molina, M. del C. (2022). Chemical composition, antifungal and phytotoxic activities of Cistus ladanifer L. essential oil and hydrolate. Biocatalysis and Agricultural Biotechnology, 45(October 2021), 102527. https://doi.org/10.1016/j.bcab.2022.102527
Pérez-Izquierdo, C., Jordán Bueso, M.J., del Carmen Rodríguez-Molina, M., Pulido, F. 2023. Spatial Variation in Yield, Chemical Composition, and Phytotoxic Activity of Cistus ladanifer Essential Oils. Chemistry and Biodiversity, 20(11). https://doi.org/10.1002/cbdv.202300995
Pérez-Izquierdo, C., Bueso, M.J.J., Serrano-Pérez, P., Rodríguez-Molina, M. del C., Pulido, F. 2024. Unravelling the impact of plant ontogenic factors on the content and phytotoxic potential of Cistus ladanifer L. (rockrose) essential oils. Scientia Horticulturae, 331(2023). https://doi.org/10.1016/j.scienta.2024.113127
Perpiña, C., Martínez-Llario, J.C., Pérez-Navarro, Á. 2013. Multicriteria assessment in GIS environments for siting biomass plants. Land Use Policy, 31, 326-335. https://doi.org/10.1016/j.landusepol.2012.07.014
Piramanayagam, S., Saber, E., Schwartzkopf, W., Koehler, F.W. 2018. Supervised classification of multisensor remotely sensed images using a deep learning framework. Remote Sensing, 10(9), 1-25. https://doi.org/10.3390/rs10091429
Richards, J. A., & Jia, X. (1999). Remote Sensing Digital Image Analysis. In Remote Sensing Digital Image Analysis. https://doi.org/10.1007/978-3-662-03978-6
Rodríguez-Valero, M.I., Alonso-Sarria, F. 2019. Classification of landsat 8 images in the segura hydrographic demarcation. Revista de Teledeteccion, 53, 33-44. https://doi.org/10.4995/raet.2019.11016
Rouse, J.W., Hass, R. H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium, 1, 309-317.
Silva, S., Alçada-Almeida, L., Dias, L.C. 2014. Biogas plants site selection integrating Multicriteria Decision Aid methods and GIS techniques: A case study in a Portuguese region. Biomass and Bioenergy, 71, 58-68. https://doi.org/10.1016/j.biombioe.2014.10.025
Smits, P. C., Dellepiane, S. G., & Schowengerdt, R. A. (1999). Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. International Journal of Remote Sensing, 20(8), 1461-1486. https://doi.org/10.1080/014311699212560
Sultana, A., Kumar, A. 2012. Optimal siting and size of bioenergy facilities using geographic information system. Applied Energy, 94, 192-201. https://doi.org/10.1016/j.apenergy.2012.01.052
Szostak, M., Hawryło, P., & Piela, D. (2018). Using of Sentinel-2 images for automation of the forest succession detection. European Journal of Remote Sensing, 51(1), 142-149. https://doi.org/10.1080/22797254.2017.1412272
Tavares, C. S., Martins, A., Faleiro, M. L., Miguel, M. G., Duarte, L. C., Gameiro, J. A., Roseiro, L. B., & Figueiredo, A. C. (2020). Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Industrial Crops and Products, 144(December 2019), 112034. https://doi.org/10.1016/j.indcrop.2019.112034
Thomas, V., Treitz, P., Jelinski, D., Miller, J., Lafleur, P., & McCaughey, J. H. (2003). Image classification of a northern peatland complex using spectral and plant community data. Remote Sensing of Environment, 84(1), 83-99. https://doi.org/10.1016/S0034-4257(02)00099-8
Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating Methodologies for Scaling Landcover Classifications from Site-Specific to Global. Remote Sensing of Environment, 70(1), 16-28. https://doi.org/10.1016/S0034-4257(99)00055-3
Tobar-Díaz, R., Gao, Y., Mas, J. F., & Cambrón-Sandoval, V. H. (2023). Classification of land use and land cover through machine learning algorithms: a literature review. Revista de Teledeteccion, 2023(62), 1-19. https://doi.org/10.4995/raet.2023.19014
Tucker, C.J., Sellers, P.J. 1986. Satellite remote sensing of primary production. International Journal of Remote Sensing, 7(11), 1395-1416. https://doi.org/10.1080/01431168608948944
Vélez-Alvarado, D. A., & Álvarez-Mozos, J. (2020). Clasificación de usos y cubiertas del suelo y análisis de cambios en los alrededores de la Reserva Ecológica Manglares Churute (Ecuador) mediante una serie de imágenes Sentinel-1. Revista de Teledetección, 56, 131. https://doi.org/10.4995/raet.2020.14099
Wang, L., Sousa, W. P., Gong, P. 2004. Integration of objectbased and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25(24), 5655-5668. https://doi.org/10.1080/014311602331291215
Whiteside, T. G., Boggs, G. S., & Maier, S. W. (2011). Comparing object-based and pixel-based classifications for mapping savannas. International Journal of Applied Earth Observation and Geoinformation, 13(6), 884-893. https://doi.org/10.1016/j.jag.2011.06.008
Woo, H., Acuna, M., Moroni, M., Taskhiri, M. S., Turner, P. 2018. Optimizing the location of biomass energy facilities by integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests, 9(10), 1-15. https://doi.org/10.3390/f9100585
Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., Liu, S., Yu, L., Wang, X., Zhu, P., Li, X., Xu, Y., Li, C., Fu, W., Li, X., Li, W., Liu, C., Cong, N., Zhang, H., Gong, P. 2014. Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal of Remote Sensing, 35(13), 4573-4588. https://doi.org/10.1080/01431161.2014.930206
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Carlos Pérez-Izquierdo, Fernando Pulido
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
Funding data
-
Junta de Extremadura
Grant numbers PD16092