Spatio-temporal analysis of harmful algal blooms in tropical crater-lake from MODIS data (2003-2020)
DOI:
https://doi.org/10.4995/raet.2023.19673Keywords:
MODIS, Machine Learning algorithms, Harmful algal bloom, Turquoise lakeAbstract
The crater lake of Santa María del Oro in Nayarit, presents Algal Blooms (AB) in a cyclical annual manner, the blooming and subsequent decline of these populations creates color changes in the water, generally in the first half of the year. This work evaluated supervised classification algorithms that allow these changes to be identified using data from the MOD09GQ and MYD09GQ products of MODIS sensor in the period from January 2003 to December 2020. Based on a review of AB recorded in the literature and statistical analysis of dispersion graphs, a database of spectral information and lake color state labels were built to evaluate the different classification algorithms. The best classifier was Random Forest with an accuracy of 87.1%. The temporal analysis and spatial evaluation of the blooms incidence showed that may, april and march are the months with the greatest presence of color changes related to AB in the lake. The spatial analysis found that the highest incidence of blooms occurs in the southeast region of the lake and the largest amounts of events occurred in the years 2011, 2008 and 2012 respectively. The influence of the El Niño-Southern Oscillation (ENSO) phenomenon on the incidence of algal blooms in the crater lake is determined due to the temporal pattern between the anomalies in the AB and the Multivariate ENSO Index, where the greater number of AF events occurred in the cold phases of the ENSO.
Downloads
References
Aghababaei, M., Ebrahimi, A., Naghipour, A.A., Asadi, E., Pérez-Suay, A., Morata, M., & Verrelst, J. 2022. Introducing artmo's machine-learning classification algorithms toolbox: Application to plant-type detection in a semi-steppe iranian landscape. Remote Sensing, 14(18), 4452. https://doi.org/10.3390/rs14184452
Ananias, P.H.M., Negri, R.G., Dias, M.A., Silva, E.A., & Casaca, W. 2022. A fully unsupervised machine learning framework for algal bloom forecasting in inland waters using modis time series and climatic products. Remote Sensing, 14(17), 4283 https://doi.org/10.3390/rs14174283
Armienta, M.A., Vilaclara, G., De la Cruz-Reyna, S., Ramos, S., Ceniceros, N., Cruz, O.,Arcega-Cabrera, F. 2008. Water chemistry of lakes related to active and inactive mexican volcanoes. Journal of Volcanology and Geothermal Research, 178(2), 249-258. https://doi.org/10.1016/j.jvolgeores.2008.06.019
Breiman, L. 2001. Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Caicedo, J.P.R., Verrelst, J., Muñoz-Marí, J., Moreno, J., & Camps-Valls, G. 2014. Towarda semiautomatic machine learning retrieval of biophysical parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4), 1249-1259. https://doi.org/10.1109/JSTARS.2014.2298752
Carlson, R.E. 1977. A trophic state index for lakes 1. Limnology and Oceanography, 22(2), 361-369. https://doi.org/10.4319/lo.1977.22.2.0361
Carpenter, S.R., Stanley, E.H., & Vander Zanden, M.J. 2011. State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annual review of Environment and Resources, 36, 75-99. https://doi.org/10.1146/annurev-environ-021810-094524
Congalton, R.G., & Green, K. 2019. Assessing the accuracy of remotely sensed data: principles and practices. CRC press https://doi.org/10.1201/9780429052729
Cortés-Macías, L.Z. 2018. Validación y calibración del algoritmo OC2 para Landsat 8 aplicado al lago cráter de Santa María del Oro, Nayarit.
Dörnhöfer, K., & Oppelt, N. 2016. Remote sensing for lake research and monitoring-recent advances. Ecological Indicators, 64, 105-122 https://doi.org/10.1016/j.ecolind.2015.12.009
Eleveld, M.A., Ruescas, A.B., Hommersom, A., Moore, T.S., Peters, S.W., & Brockmann, C. 2017. An optical classification tool for global lake waters. Remote Sensing, 9(5), 420. https://doi.org/10.3390/rs9050420
Fisher, R.A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Flach, P.A., & Lachiche, N. 2004. Naive bayesian classification of structured data. Machine learning, 57(3), 233-269. https://doi.org/10.1023/B:MACH.0000039778.69032.ab
German, A., Andreo, V., Tauro, C., Scavuzzo, C.M., & Ferral, A. 2020. A novel method based on time series satellite data analysis to detect algal blooms. Ecological Informatics, 59, 101131. https://doi.org/10.1016/j.ecoinf.2020.101131
Germán, A., Tauro, C., Andreo, V., Bernasconi, I., & Ferral, A. 2016. Análisis de una serie temporal de clorofila-a a partir de imágenes modis de un embalse eutrófico. En 2016 IEEE Biennial Congress of Argentina (argencon) (pp. 1-6). https://doi.org/10.1109/ARGENCON.2016.7585365
Germán, A., Tauro, C., Scavuzzo, M.C., & Ferral, A. 2017. Detection of algal blooms in a eutrophic reservoir based on chlorophyll-a time series data from modis. En 2017 IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 4008-4011). https://doi.org/10.1109/IGARSS.2017.8127879
Gitelson, A.A., Dall'Olmo, G., Moses, W., Rundquist, D.C., Barrow, T., Fisher, T.R.,... Holz,J. 2008. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sensing of Environment, 112(9), 3582-3593. https://doi.org/10.1016/j.rse.2008.04.015
Hamilton, J.D. 2020. Time series analysis. Princeton university press. https://doi.org/10.2307/j.ctv14jx6sm
Hovis, W.A., & Leung, K. 1977. Remote sensing of ocean color. Optical Engineering, 16(2),158-166. https://doi.org/10.1117/12.7972093
Hsiao, S.I. 1988. Spatial and seasonal variations in primary production of sea ice microalgae and phytoplankton in frobisher bay, arctic canada. Marine Ecology Progress Series, 275-285. https://doi.org/10.3354/meps044275
Goodfellow, I., Bengio, Y., & Courville, A. 2016. Deep learning. MIT press.
Hu, C., Lee, Z., Ma, R., Yu, K., Li, D., & Shang, S. 2010. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research: Oceans, 115(C4). https://doi.org/10.1029/2009JC005511
Huang, C., Li, Y., Yang, H., Sun, D., Yu, Z., Zhang, Z.,... & Xu, L. 2014. Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS. Environmental earth sciences, 71, 3705-3714. https://doi.org/10.1007/s12665-013-2764-6
Jia, T., Zhang, X., & Dong, R. 2019. Long-term spatial and temporal monitoring of cianobacteria blooms using modis on google earth engine: A case study in taihu lake. Remote Sensing, 11(19), 2269. https://doi.org/10.3390/rs11192269
Klima, E.F., & Roe, R.B. 1972. Report of the national marine fisheries service southeast fisheries center, pascagoula laboratory, fiscal years 1970 and 1971.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., Takahashi, K., 2015. The JRA-55 Reanalysis: general specifications and basic characteristics. J. Meteor. Soc. Jpn., 93, 5-48. https://doi.org/10.2151/jmsj.2015-001
Li, J., Gao, M., Feng, L., Zhao, H., Shen, Q., Zhang, F.,... Zhang, B. 2019. Estimation ofchlorophyll-a concentrations in a highly turbid eutrophic lake using a classification-based modis land-band algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(10), 3769-3783. https://doi.org/10.1109/JSTARS.2019.2936403
Lynch, A.J., Cooke, S.J., Deines, A.M., Bower, S.D., Bunnell, D.B., Cowx, I.G.,... others 2016. The social, economic, and environmental importance of inland fish and fisheries. Environmental Reviews, 24(2), 115-121. https://doi.org/10.1139/er-2015-0064
Masocha, M., Dube, T., Nhiwatiwa, T., & Choruma, D. 2018. Testing utility of landsat 8 for remote assessment of water quality in two subtropical african reservoirs with contrasting trophic states. Geocarto International, 33(7), 667-680. https://doi.org/10.1080/10106049.2017.1289561
Moore, T.S., Dowell, M.D., Bradt, S., & Verdu, A.R. 2014. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote sensing of environment, 143, 97-111. https://doi.org/10.1016/j.rse.2013.11.021
Moses, W.J., Sterckx, S., Montes, M.J., De Keukelaere, L., & Knaeps, E. 2017. Atmospheric correction for inland waters. En Bio-optical modeling and remote sensing of inland Waters (pp. 69-100). Elsevier. https://doi.org/10.1016/B978-0-12-804644-9.00003-3
Moss, B. 2012. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. Science of the Total Environment, 434, 130-142. https://doi.org/10.1016/j.scitotenv.2011.07.069
Muñoz-Marí, J., & Camps-Valls, G. 2013. Simpleclass: Simple classification toolbox [Manual de software informático]. Descargado de https://github.com/IPLUV/simpleClass (accessed October 21, 2020).
Oliva-Martínez, M.G., Godínez-Ortega, J.L., & ZuñigaRamos, C.A. 2014. Biodiversidad del fitoplancton de aguas continentales en México. Revista mexicana de biodiversidad, 85, 54-61. https://doi.org/10.7550/rmb.32706
Paerl, H.W., & Millie, D.F. 1996. Physiological ecology of toxic aquatic cyanobacteria. Phycologia, 35(sup6), 160-167. https://doi.org/10.2216/i0031-8884-35-6S-160.1
Pal, M. 2005. Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222. https://doi.org/10.2216/i0031-8884-35-6S-160.1
PiSHAROTY, P. 1973. Space technology and oceanography. MBAI Special Publication dedicated to Dr. NK Panikkar (1), 46-51.
Pizzolon, L. 1996. Importancia de las cianobacterias como factor de toxicidad en las aguas continentales. Interciencia, 21(6), 239-245.
Raileanu, L.E., & Stoffel, K. 2004. Theoretical comparison between the gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1), 77-93. https://doi.org/10.1023/B:AMAI.0000018580.96245.c6
Roodschild, M., Gotay Sardiñas, J., Will, A.E., & Rodriguez, S.A. 2019. Optimización de scaled conjugate gradient para froog neural networks. En XX Simposio Argentino de Inteligencia Artificial (ASAI 2019)-JAIIO 48(SALTA).
Salazar-Alcaraz, I. 2018. Identificación y aislamiento de cianobacterias de un lago cráter tropical (MATHESIS). Universidad Autónoma de Nayarit.
Salazar-Alcaraz, I., Ochoa-Zamora, G.G., HernándezAlmeida, O.U., Palomino-Hermosillo, Y.A., LeyvaValencia, I., Romero-Bañuelos, C.A., & CepedaMorales, J. 2021. Polyphasic assessment of thebloom-forming cyanobacterial species Limnoraphis robusta (oscillatoriaceae) and Microcystis aeruginosa (microcystaceae) in a mexican subtropical crater lake. Revista mexicana de biodiversidad, 92. https://doi.org/10.22201/ib.20078706e.2021.92.3485
Serrano, D., Filonov, A., & Tereshchenko, I. 2002. Dynamic response to valley breeze circulation in santa maria del oro, a volcanic lake in Mexico. Geophysical Research Letters, 29(13), 1-4. https://doi.org/10.1029/2001GL014142
Shaik, A.B., & Srinivasan, S. 2019. A brief survey on random forest ensembles in classification model. En International conference on innovative computing and communications: Proceedings of ICICC 2018, volume 2(pp. 253-260). https://doi.org/10.1007/978-981-13-2354-6_27
Shi, K., Li, Y., Li, L., Lu, H., Song, K., Liu, Z.,... Li, Z. 2013. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Science of the Total Environment, 444, 1-15. https://doi.org/10.1016/j.scitotenv.2012.11.058
Shi, K., Zhang, Y., Xu, H., Zhu, G., Qin, B., Huang, C.,... Lv, H. 2015. Long-term satellite observations of microcystin concentrations in lake taihu during cyanobacterial bloom periods. Environmental Science & Technology, 49(11), 6448-6456. https://doi.org/10.1021/es505901a
Shi, K., Zhang, Y., Zhang, Y., Li, N., Qin, B., Zhu, G., & Zhou, Y. 2019. Phenology of phytoplankton blooms in a trophic lake observed from long-term modis data. Environmental science & technology, 53(5), 2324-2331. https://doi.org/10.1021/acs.est.8b06887
Shi, K., Zhang, Y., Zhang, Y., Qin, B., & Zhu, G. 2020. Understanding the long-term tren of particulate phosphorus in a cyanobacteria-dominated lake using modis-aqua observations. Science of The Total Environment, 737, 139736. https://doi.org/10.1016/j.scitotenv.2020.139736
Shi, K., Zhang, Y., Zhou, Y., Liu, X., Zhu, G., Qin, B., & Gao, G. 2017. Long-term modis observations of cyanobacterial dynamics in lake taihu: Responses to nutrient enrichment and meteorological factors. Scientific reports, 7(1), 1-16. https://doi.org/10.1038/srep40326
Sosa-Nájera, S., Lozano-García, S., Roy, P.D., & Caballero, M. 2010. Registro de sequías históricas en el occidente de México con base en el análisis elemental de sedimentos lacustres: El caso del lago de Santa María del Oro. Boletín de la Sociedad Geológica Mexicana, 62(3), 437-451. https://doi.org/10.18268/BSGM2010v62n3a8
Spyrakos, E., O'donnell, R., Hunter, P.D., Miller, C., Scott, M., Simis, S.G.,... others 2018. Optical types of inland and coastal waters. Limnology and Oceanography, 63(2), 846-870. https://doi.org/10.1002/lno.10674
Tett, P. 1987. The ecophysiology of exceptional blooms. Rapport et Proces-verbaux des Reunions. Conseil international pour l'Exploration de la Mer, 187, 47-60.
Tharwat, A., Gaber, T., Ibrahim, A., & Hassanien, A.E. 2017. Linear discriminant analysis: A detailed tutorial. AI communications, 30(2), 169-190. https://doi.org/10.3233/AIC-170729
The MathWorks, I. 2010. Deep learning toolbox [Manual de software informático]. Natick, Massachusetts, United State. Descargado de https://www.mathworks.com/help/deeplearning/ref/patternnet.html
Tomaselli, L., & cols. 2004. The microalgal cell. Handbook of microalgal culture: Biotechnology and applied phycology, 1, 3-19 https://doi.org/10.1002/9780470995280.ch1
Verhoef, W. 1996. Application of harmonic analysis of ndvi time series (hants). Fourier análisis of temporal NDVI in the Southern African and American continents, 108, 19-24.
Vermote, Eric, y Wolfe, Robert. 2015. MOD09GQ MODIS/Terra Surface Reflectance Daily L2G Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. Descargado 2021-07-22, de: https://lpdaac.usgs.gov/products/mod09gqv006/(Type: dataset) doi:10.5067/MODIS/MOD09GQ.006
Wang, Q., Ma, Y., Zhao, K., & Tian, Y. 2022. A comprehensive survey of loss functions in machine learning. Annals of Data Science, 9(2), 187-212. https://doi.org/10.1007/s40745-020-00253-5
Wang, S., Li, J., Zhang, B., Spyrakos, E., Tyler, A.N., Shen, Q., Zhang, F., Kuster, T., Lehmann, M.K., Wu, Y., Peng, D. 2018. Trophic state assessment of global inland waters using a modis-derived forel-ule index. Remote Sensing of Environment, 217, 444-460. https://doi.org/10.1016/j.rse.2018.08.026
Wolter, K., & Timlin, M.S. 1993. Monitoring enso in coads with a seasonally adjusted principal component index. En Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, Cimms And The School Of Meteor., univ. Of Oklahoma (Vol. 52).
Xiang, S., Nie, F., & Zhang, C. 2008. Learning a mahalanobis distance metric for data clustering and classification. Pattern recognition, 41(12), 3600-3612. https://doi.org/10.1016/j.patcog.2008.05.018
Xing, X.-G., Zhao, D.-Z., Liu, Y.-G., Yang, J.-H., Xiu, P., & Wang, L. 2007. An overview of508 remote sensing of chlorophyll fluorescence. Ocean Science Journal, 42, 49-59. https://doi.org/10.1007/BF03020910
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Lizette Zareh Cortés-Macías, Juan Pablo Rivera-Caicedo, Jushiro Cepeda-Morales, Óscar Ubisha Hernández-Almeida, Ricardo García-Morales, Pablo Velarde-Alvarado
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International