Land cover classification with spatial resolution of 10 meters in forests of the Colombian Caribbean based on Sentinel 1 and 2 missions
DOI:
https://doi.org/10.4995/raet.2023.17655Keywords:
Sentinel, bands selection, Google Earth Engine, classification accuracy, dry forest, ColombiaAbstract
A Land cover map of the Colombian Caribbean were generated with data from the Sentinel-1 and Sentinel-2 missions for the year 2020. The main objective was to evaluate Sentinel 1 and 2 images to generate a classification for Caribbean forests. The images were processed using Google Earth Engine (GEE) and then classified using Random Forest. The Overall Accuracy, the Mean Decrease Accuracy and the Mean Decrease in Gini were calculated for the optical and radar bands, this allowed evaluating the importance of different regions of the electromagnetic spectrum in the classification of vegetation cover and the relative importance of the spectral bands. The accuracy of the land cover map was 76% using exclusively Sentinel-2 bands, with a slight increase when Sentinel-1 data was incorporated. The SWIR region was the most important of both Sentinel programs for increasing accuracy. We highlight the importance of coastal aerosol band 1 (442.7 nm) in the classification despite its low spatial resolution. The overall accuracy reached 83% when adding the Elevation data from the Shuttle Radar Topography Mission (SRTM) as auxiliary variable. These results indicate great potential for the generation of vegetation cover maps at the regional level while maintaining a pixel size of 10 m. This article highlights the relative importance of the different bands and its contribution to improve accuracy.
Downloads
References
Achard, F., y Hansen, M.C. 2013. Global forest monitoring from earth observation (E. Chuvieco, Ed.; p. 316). CRC Press, Taylor y Francis Group.
Anaya, J.A., Colditz, R.R., y Valencia, G.M. 2015. Land cover mapping of a tropical region by integrating multi-year data into an annual time series. Remote Sensing, 7(12). https://doi.org/10.3390/rs71215833
Anaya, J.A., Gutiérrez-Vélez, V.H., Pacheco-Pascagaza, A.M., Palomino-Ángel, S., Han, N., y Balzter, H. 2020. Drivers of Forest Loss in a Megadiverse Hotspot on the Pacific Coast of Colombia. Remote Sensing, 12(8), 1235. https://doi.org/10.3390/rs12081235
Andrade, J., Cunha, J., Silva, J., Rufino, I., y Galvão, C. 2021. Evaluating single and multidate Landsat classifications of land-cover in a seasonally dry tropical forest. Remote Sensing Applications: Society and Environment, 22, 100515. https://doi.org/10.1016/j.rsase.2021.100515
Arias, M., Campo-Bescós, M.Á., y Álvarez-Mozos, J. 2020. Crop Classification Based on Temporal Signatures of Sentinel-1 Observations over Navarre Province, Spain. In Remote Sensing, 12(2), 278. https://doi.org/10.3390/rs12020278
Barlow, J., Lennox, G.D., Ferreira, J., Berenguer, E., Lees, A.C., Nally, R. mac, Thomson, J.R., Ferraz, S.F. de B., Louzada, J., Oliveira, V.H.F., Parry, L., Ribeiro de Castro Solar, R., Vieira, I.C.G., Aragão, L.E.O.C., Begotti, R.A., Braga, R.F., Cardoso, T.M., Jr, R.C. de O., Souza Jr, C.M., … Gardner, T.A. 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535(7610), 144-147. https://doi.org/10.1038/nature18326
Bastin, J.-F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., Patriarca, C., Picard, N., Sparrow, B., Abraham, E.M., Aloui, K., Atesoglu, A., Attore, F., Bassüllü, Ç., Bey, A., Garzuglia, M., García-Montero, L.G., Groot, N., Guerin, G., … Castro, R. 2017. The extent of forest in dryland biomes. Science, 356(6338), 635 LP - 638. https://doi.org/10.1126/science.aam6527
Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Campos-Taberner, M., García-Haro, F.J., Martínez, B., y Gilabert, M.A. 2020. Deep learning for agricultural land use classification from sentinel-2. Revista de Teledeteccion, 2020(56 Special issue), 35-48. https://doi.org/10.4995/raet.2020.13337
Cartus, O., Kellndorfer, J., Walker, W., Franco, C., Bishop, J., Santos, L., y Fuentes, J.M.M. 2014. A national, detailed map of forest aboveground carbon stocks in Mexico. Remote Sensing, 6, 5559-5588. https://doi.org/10.3390/rs6065559
Cavalcante, R.B.L., Ferreira, D.B. da S., Pontes, P.R.M., Tedeschi, R.G., da Costa, C.P.W., y de Souza, E.B. 2020. Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmospheric Research, 238, 104879. https://doi.org/10.1016/j.atmosres.2020.104879
Chastain, R., Housman, I., Goldstein, J., Finco, M., y Tenneson, K. 2019. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sensing of Environment, 221, 274-285. https://doi.org/10.1016/j.rse.2018.11.012
Chazdon, R.L., Brancalion, P.H.S., Laestadius, L., Bennett-Curry, A., Buckingham, K., Kumar, C., Moll-Rocek, J., Vieira, I.C.G., y Wilson, S.J. 2016. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio, 45(5), 538-550. https://doi.org/10.1007/s13280-016-0772-y
Chen, B., Li, X., Xiao, X., Zhao, B., Dong, J., Kou, W., Qin, Y., Yang, C., Wu, Z., Sun, R., Lan, G., y Xie, G. 2016. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. International Journal of Applied Earth Observation and Geoinformation, 50, 117-130. https://doi.org/10.1016/j.jag.2016.03.011
Congalton, R.G., y Green, Kass. 2009. Assessing the accuracy of remotely sensed data (2nd ed.). CRC Press.
Correa-Ayram, C.A., Etter, A., Díaz-Timoté, J., Rodríguez-Buriticá, S., Ramírez, W., y Corzo, G. 2020. Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/j.ecolind.2020.106630
Descals, A., Wich, S., Meijaard, E., Gaveau, D.L.A., Peedell, S., y Szantoi, Z. 2021. High-resolution global map of smallholder and industrial closedcanopy oil palm plantations. Earth Syst. Sci. Data, 13(3), 1211-1231. https://doi.org/10.5194/essd-13-1211-2021
Fagan, M.E. 2020. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Global Change Biology, 26(9), 4679-4690. https://doi.org/10.1111/gcb.15187
Hansen, M.C., Krylov, A., Tyukavina, A., Potapov, P. v, Turubanova, S., Zutta, B., Ifo, S., Margono, B., Stolle, F., y Moore, R. 2016. Humid tropical forest disturbance alerts using Landsat data. Environmental Research Letters, 11(3), 34008. https://doi.org/10.1088/1748-9326/11/3/034008
Himeur, Y., Rimal, B., Tiwary, A., y Amira, A. 2022. Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Information Fusion, 86-87, 44-75. https://doi.org/10.1016/j.inffus.2022.06.003
Hong, D., Hu, J., Yao, J., Chanussot, J., y Zhu, X.X. 2021. Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 68-80. https://doi.org/10.1016/j.isprsjprs.2021.05.011
IAvH, y MADS. 2014. Mapa de coberturas de bosque seco tropical en Colombia (escala 1:100.000, 2.0v). 1 hoja cartográfica. http://www.humboldt.org.co/images/documentos/pdf/investigacion/ariza-et-al2014-memoria-tecnica-validacion.pdf
IDEAM. 2010. Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. (M. y E. Ambientales. Instituto de Hidrología, Ed.; p. 72).
IDEAM. 2016. Mapa de Bosque No Bosque Colombia Área Continental (p. Landsat). http://www.siac.gov.co/catalogo-de-mapas
Jin, H., y Mountrakis, G. 2022. Fusion of optical, radar and waveform LiDAR observations for land cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 171-190. https://doi.org/10.1016/j.isprsjprs.2022.03.010
Kellndorfer, J., Walker, W., Pierce, L., Dobson, C., Fites, J.A., Hunsaker, C., Vona, J., y Clutter, M. 2004. Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation datasets. Remote Sensing of Environment, 93, 339-358. https://doi.org/10.1016/j.rse.2004.07.017
Lapini, A., Fontanelli, G., Pettinato, S., Santi, E., Paloscia, S., Tapete, D., y Cigna, F. 2020. Application of deep learning to optical and SAR images for the classification of agricultural areas in Italy. IEEE Geoscience and Remote Sensing Letters, 4163-4166. https://doi.org/10.1109/IGARSS39084.2020.9323190
Lillesand, T.M., y Kiefer, R.W. 2000. Remote sensing and image interpretation (J.W. and Sons, Ed.; Fourth). Wiley.
Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V., y Gordon, J.E. 2006. A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491-505. https://doi.org/10.1111/j.1365-2699.2005.01424.x
Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., y Reiche, J. 2021. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing, 13(10). https://doi.org/10.3390/rs13101954
NASA JPL. 2020. NASADEM Merged DEM Global 1 arc second. https://lpdaac.usgs.gov/products/nasadem_hgtv001/
Ndikumana, E., Ho Tong Minh, D., Baghdadi, N., Courault, D., y Hossard, L. 2018. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. In Remote Sensing, 10(8), 1217. https://doi.org/10.3390/rs10081217
Olofsson, P., Foody, G.M., Stehman, S.V., y Woodcock, C.E. 2013. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129(0), 122-131. https://doi.org/10.1016/j.rse.2012.10.031
Olofsson, P., Foody, G.M., Herold, M., Stehman, S. v, Woodcock, C.E., y Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015
Palomino-Ángel, S., Anaya-Acevedo, J.A., y Botero, B.A. 2019. Evaluation of 3B42V7 and IMERG dailyprecipitation products for a very high-precipitation region in northwestern South America. Atmospheric Research, 217, 37-48. https://doi.org/10.1016/j.atmosres.2018.10.012
Pizano, C., y García, H. 2014. El bosque seco tropical en Colombia. Instituto de investigación de recursos biológicos Alexander von Humboldt.
Portillo-Quintero, C., Sanchez-Azofeifa, A., CalvoAlvarado, J., Quesada, M., y do Espirito Santo, M.M. 2015. The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: lessons learned and opportunities for its sustainable management. Regional Environmental Change, 15(6), 1039-1049. https://doi.org/10.1007/s10113-014-0689-6
Soudani, K., Delpierre, N., Berveiller, D., Hmimina, G., Vincent, G., Morfin, A., y Dufrêne, É. 2021. Potential of C-band Synthetic Aperture Radar Sentinel-1 timeseries for the monitoring of phenological cycles in a deciduous forest. International Journal of Applied Earth Observation and Geoinformation, 104, 102505. https://doi.org/10.1016/j.jag.2021.102505
Vélez, D.A., y Álvarez-Mozos, J. 2020. Land use and land cover classification and change analysis in the area surrounding the manglares churute ecological reserve (Ecuador) using sentinel-1 time series. Revista de Teledeteccion, 2020(56), 131-146. https://doi.org/10.4995/raet.2020.14099
Vollrath, A., Mullissa, A., y Reiche, J. 2020. AngularBased Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing, 12(11). https://doi.org/10.3390/rs12111867
Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., y Ng, W.-T. 2018. How much does multitemporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122-130. https://doi.org/10.1016/j.jag.2018.06.007
Whelen, T., y Siqueira, P. 2018. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sensing Letters, 9(5), 411-420. https://doi.org/10.1080/2150704X.2018.1430393
Zhang, F., y Yang, X. 2020. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sensing of Environment, 251, 112105. https://doi.org/10.1016/j.rse.2020.112105
Zhang, H., Li, J., Wang, T., Lin, H., Zheng, Z., Li, Y., y Lu, Y. 2018. A manifold learning approach to urban land cover classification with optical and radar data. Landscape and Urban Planning, 172, 11-24. https://doi.org/10.1016/j.landurbplan.2017.12.009
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jesús A. Anaya, Susana Rodríguez-Buriticá, María C. Londoño
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
Funding data
-
United States Agency for International Development
Grant numbers USAID AID-OAA-A-11-00012