High Resolution Land Cover Mapping and Crop Classification in the Loukkos Watershed (Northern Morocco): An Approach Using SAR Sentinel-1 Time Series
DOI:
https://doi.org/10.4995/raet.2022.17426Keywords:
Land cover, Sentinel-1, Crop classification, Time series, Loukkos watershedAbstract
Remote sensing has become more and more a reliable tool for mapping land cover and monitoring cropland. Much of the work done in this field uses optical remote sensing data. In Morocco, active remote sensing data remain under-exploited despite their importance in monitoring spatial and temporal dynamics of land cover and crops even during cloudy weather. This study aims to explore the potential of C-band Sentinel-1 data in the production of a high-resolution land cover mapping and crop classification within the irrigated Loukkos watershed agricultural landscape in northern Morocco. The work was achieved by using 33 dual-polarized images in vertical-vertical (VV) and vertical-horizontal (VH) polarizations. The images were acquired in ascending orbits between April 16 and October 25, 2020, with the purpose to track the backscattering behavior of the main crops and other land cover classes in the study area. The results showed that the backscatter increased with the phenological development of the monitored crops (rice, watermelon, peanuts, and winter crops), strongly for the VH and VV bands, and slightly for the VH/VV ratio. The other classes (water, built-up, forest, fruit trees, permanent vegetation, greenhouses, and bare lands) did not show significant variation during this period. Based on the backscattering analysis and the field data, a supervised classification was carried out, using the Random Forest Classifier (RF) algorithm. Results showed that radiometric characteristics and 6 days’ time resolution covered by Sentinel-1 constellation gave a high classification accuracy by dual-polarization with Radar Ratio (VH/VV) or Radar Vegetation Index and textural features (between 74.07% and 75.19%). Accordingly, this study proves that the Sentinel-1 data provide useful information and a high potential for multi-temporal analyses of crop monitoring, and reliable land cover mapping which could be a practical source of information for various purposes in order to undertake food security issues.
Downloads
References
Abdikan, S., Sanli, F.B., Ustuner, M., Calò, F., 2016. LAND COVER MAPPING USING SENTINEL-1 SAR DATA. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B7, 757–761. https://doi.org/10.5194/isprsarchives-XLI-B7-757-2016
Arias, M., Campo-Bescós, M.Á., Álvarez-Mozos, J., 2020. Crop Classification Based on Temporal Signatures of Sentinel-1 Observations over Navarre Province, Spain. Remote Sens. 12, 278. https://doi.org/10.3390/rs12020278
Baghdadi, N., Bernier, M., Gauthier, R., Neeson, I. 2001. Evaluation of C-band SAR data for wetlands mapping. International Journal of Remote Sensing 22, 71–88. https://doi.org/10.1080/014311601750038857
Balzter, H., Cole, B., Thiel, C., Schmullius, C., 2015. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests. Remote Sens. 7, 14876–14898. https://doi.org/10.3390/rs71114876
Bargiel, D., 2017. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 198, 369–383. https://doi.org/10.1016/j.rse.2017.06.022
Bargiel, D., Herrmann, S., 2011. Multi-Temporal Land-Cover Classification of Agricultural Areas in Two European Regions with High Resolution Spotlight TerraSAR-X Data. Remote Sens. 3, 859–877. https://doi.org/10.3390/rs3050859
Bazzi, H., Baghdadi, N., El Hajj, M., Zribi, M., Minh, D.H.T., Ndikumana, E., Courault, D., Belhouchette, H., 2019. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sens. 11, 887. https://doi.org/10.3390/rs11070887
Breiman, L., 1999. RANDOM FORESTS--RANDOM FEATURES. Tech. Rep. 567, Statistics Department, University of California, Berkeley, 29.
Brisco, B., Ahern, F., Murnaghan, K., White, L., Canisus, F., Lancaster, P., 2017. Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring. Remote Sens. 9, 158. https://doi.org/10.3390/rs9020158
Brown, S.C.M., Quegan, S., Morrison, K., Bennett, J.C., Cookmartin, G., 2003. High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Trans. Geosci. Remote Sens. 41, 1602–1610. https://doi.org/10.1109/TGRS.2003.814132
Chen, S., Useya, J., Mugiyo, H., 2020. Decision-level fusion of Sentinel-1 SAR and Landsat 8 OLI texture features for crop discrimination and classification: case of Masvingo, Zimbabwe. Heliyon 6, e05358. https://doi.org/10.1016/j.heliyon.2020.e05358
Clauss, K., Ottinger, M., Kuenzer, C., 2018. Mapping rice areas with Sentinel-1 time series and superpixel segmentation. Int. J. Remote Sens. 39, 1399–1420. https://doi.org/10.1080/01431161.2017.1404162
Denize, J., Hubert-Moy, L., Pottier, E., 2019. Polarimetric SAR Time-Series for Identification of Winter Land Use. Sensors 19, 5574. https://doi.org/10.3390/s19245574
Dimov, D., Kuhn, J., Conrad, C., 2016. ASSESSMENT OF CROPPING SYSTEM DIVERSITY IN THE FERGANA VALLEY THROUGH IMAGE FUSION OF LANDSAT 8 AND SENTINEL-1. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III–7, 173–180. https://doi.org/10.5194/isprsannals-III-7-173-2016
Dingle Robertson, L., M. Davidson, A., McNairn, H., Hosseini, M., Mitchell, S., de Abelleyra, D., Verón, S., le Maire, G., Plannells, M., Valero, S., Ahmadian, N., Coffin, A., Bosch, D., H. Cosh, M., Basso, B., Saliendra, N., 2020. C-band synthetic aperture radar (SAR) imagery for the classification of diverse cropping systems. Int. J. Remote Sens. 41, 9628–9649. https://doi.org/10.1080/01431161.2020.1805136
Falcucci, A., Maiorano, L., Boitani, L., 2007. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 22, 617–631. https://doi.org/10.1007/s10980-006-9056-4
Geymen, A., Baz, I., 2007. Monitoring urban growth and detecting land-cover changes on the Istanbul metropolitan area. Environ. Monit. Assess. 136, 449–459. https://doi.org/10.1007/s10661-007-9699-x
Griffiths, P., van der Linden, S., Kuemmerle, T., Hostert, P. 2013. A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2088–2101. https://doi.org/10.1109/JSTARS.2012.2228167
Hansen, M.C., Egorov, A., Roy, D.P., Potapov, P., Ju, J., Turubanova, S., Kommareddy, I., Loveland, T.R. 2011. Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project. Remote Sensing Letters, 2, 279–288. https://doi.org/10.1080/01431161.2010.519002
Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621. https://doi.org/10.1109/TSMC.1973.4309314
Harfenmeister, K., Spengler, D., Weltzien, C., 2019. Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data. Remote Sens. 11, 1569. https://doi.org/10.3390/rs11131569
Hütt, C., Waldhoff, G., 2018. Multi-data approach for crop classification using multitemporal, dual-polarimetric TerraSAR-X data, and official geodata. Eur. J. Remote Sens. 51, 62–74. https://doi.org/10.1080/22797254.2017.1401909
Jeevalakshmi, D., Reddy, S.N., Manikiam, B., 2016. Land cover classification based on NDVI using LANDSAT8 time series: A case study Tirupati region, in: 2016 International Conference on Communication and Signal Processing (ICCSP). Presented at the 2016 International Conference on Communication and Signal Processing (ICCSP), IEEE, Melmaruvathur, Tamilnadu, India, pp. 1332–1335. https://doi.org/10.1109/ICCSP.2016.7754369
Jiancheng S., Dozier, J., Rott, H. 1994. Snow mapping in alpine regions with synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 32, 152–158. https://doi.org/10.1109/36.285197
Khalil, R.Z., Saad-ul-Haque, 2018. InSAR coherence-based land cover classification of Okara, Pakistan. Egypt. J. Remote Sens. Space Sci. 21, S23–S28. https://doi.org/10.1016/j.ejrs.2017.08.005
Kpienbaareh, D., Sun, X., Wang, J., Luginaah, I., Bezner Kerr, R., Lupafya, E., Dakishoni, L., 2021. Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 13, 700. https://doi.org/10.3390/rs13040700
Kumar, S.D., Rao, S.S., Sharma, J.R., 2013. Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton. Indian Cartogr 33, 91–96.
Kussul, N., Lemoine, G., Gallego, F.J., Skakun, S.V., Lavreniuk, M., Shelestov, A.Yu., 2016. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 2500–2508. https://doi.org/10.1109/JSTARS.2016.2560141
Larrañaga, A., Álvarez-Mozos, J., 2016. On the Added Value of Quad-Pol Data in a Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery. Remote Sens. 8, 335. https://doi.org/10.3390/rs8040335
Lee, J.S., Jurkevich, L., Dewaele, P., Wambacq, P., Oosterlinck, A., 1994. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 8, 313–340. https://doi.org/10.1080/02757259409532206
Mandal, D., Kumar, V., Bhattacharya, A., Rao, Y.S., Siqueira, P., Bera, S., 2018. Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data With Google Earth Engine. IEEE Geosci. Remote Sens. Lett. 15, 1947–1951. https://doi.org/10.1109/LGRS.2018.2865816
Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H., Rao, Y.S. 2020. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247, 111954. https://doi.org/10.1016/j.rse.2020.111954
Mascolo, L., Lopez-Sanchez, J.M., Vicente-Guijalba, F., Nunziata, F., Migliaccio, M., Mazzarella, G., 2016. A Complete Procedure for Crop Phenology Estimation With PolSAR Data Based on the Complex Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 54, 6505–6515. https://doi.org/10.1109/TGRS.2016.2585744
McNairn, H., Champagne, C., Shang, J., Holmstrom, D., Reichert, G., 2009. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 64, 434–449. https://doi.org/10.1016/j.isprsjprs.2008.07.006
McNairn, H., Shang, J., Jiao, X. Champagne, C. 2009b. The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 3981–3992. https://doi.org/10.1109/TGRS.2009.2026052
McNairn, H., Shang, J., 2016. A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring, in: Ban, Y. (Ed.), Multitemporal Remote Sensing. Springer International Publishing, Cham, pp. 317–340. https://doi.org/10.1007/978-3-319-47037-5_15
Mestre-Quereda, A., Lopez-Sanchez, J.M., Vicente-Guijalba, F., Jacob, A.W., Engdahl, M.E., 2020. Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 4070–4084. https://doi.org/10.1109/JSTARS.2020.3008096
Moumni, A., Lahrouni, A., 2021. Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area. Scientifica 2021, 1–20. https://doi.org/10.1155/2021/8810279
Munger, P., Bleiholder, H., Hack, H., Heß, M., Stauss, R., Boom, T., Weber, E. 1998. Phenological Growth Stages of the Peanut Plant (Arachis hypogaea L.): Codification and Description according to the BBCH Scale. Journal of Agronomy and Crop Science, 180, 101–107. https://doi.org/10.1111/j.1439-037X.1998.tb00377.x
Nasirzadehdizaji, R., Cakir, Z., Balik Sanli, F., Abdikan, S., Pepe, A., Calò, F. 2021. Sentinel-1 interferometric coherence and backscattering analysis for crop monitoring. Computers and Electronics in Agriculture, 185, 106118. https://doi.org/10.1016/j.compag.2021.106118
Nasirzadehdizaji, R., Balik Sanli, F., Abdikan, S., Cakir, Z., Sekertekin, A., Ustuner, M., 2019. Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Applied Sciences, 9, 655. https://doi.org/10.3390/app9040655
Ndikumana, E., Ho Tong Minh, D., Dang Nguyen, H., Baghdadi, N., Courault, D., Hossard, L., El Moussawi, I. 2018. Estimation of Rice Height and Biomass Using Multitemporal SAR Sentinel-1 for Camargue, Southern France. Remote Sensing, 10, 1394. https://doi.org/10.3390/rs10091394
Nelson, A., Setiyono, T., Rala, A., Quicho, E., Raviz, J., Abonete, P., Maunahan, A., Garcia, C., Bhatti, H., Villano, L., Thongbai, P., Holecz, F., Barbieri, M., Collivignarelli, F., Gatti, L., Quilang, E., Mabalay, M., Mabalot, P., Barroga, M., Bacong, A., Detoito, N., Berja, G., Varquez, F., Wahyunto, Kuntjoro, D., Murdiyati, S., Pazhanivelan, S., Kannan, P., Mary, P., Subramanian, E., Rakwatin, P., Intrman, A., Setapayak, T., Lertna, S., Minh, V., Tuan, V., Duong, T., Quyen, N., Van Kham, D., Hin, S., Veasna, T., Yadav, M., Chin, C., Ninh, N. 2014. Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project. Remote Sensing, 6, 10773–10812. https://doi.org/10.3390/rs61110773
Panetti, A., Rostan, F., L’Abbate, M., Bruno, C., Bauleo, A., Catalano, T., Cotogni, M., Galvagni, L., Pietropaolo, A., Taini, G., Venditti, P., Huchler, M., Torres, R., Lokas, S., Bibby, D., Geudtner, D., 2014. Copernicus Sentinel-1 Satellite and C-SAR instrument, in: 2014 IEEE Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Quebec City, QC, pp. 1461–1464. https://doi.org/10.1109/IGARSS.2014.6946712
Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G., 2016. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 187, 156–168. https://doi.org/10.1016/j.rse.2016.10.010
Phan, H., Le Toan, T., Bouvet, A. 2021. Understanding Dense Time Series of Sentinel-1 Backscatter from Rice Fields: Case Study in a Province of the Mekong Delta, Vietnam. Remote Sensing, 13, 921. https://doi.org/10.3390/rs13050921
Planque, C., Lucas, R., Punalekar, S., Chognard, S., Hurford, C., Owers, C., Horton, C., Guest, P., King, S., Williams, S., Bunting, P., 2021. National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm. Remote Sens. 13, 846. https://doi.org/10.3390/rs13050846
Pulvirenti, L., Squicciarino, G., Cenci, L., Boni, G., Pierdicca, N., Chini, M., Versace, C., Campanella, P., 2018. A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data. Environ. Model. Softw. 102, 13–28. https://doi.org/10.1016/j.envsoft.2017.12.022
Selvaraj, S., Haldar, D., Danodia, A., 2019. Time series Sentinel-1A profile analysis for heterogeneous Kharif crops discrimination in North India. URSI AP-RASC 2019 New Delhi India 09 - 15 March 2019 4 pages.
Song, Y., Wang, J., 2019. Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1 Backscatter Time Series. Remote Sens. 11, 449. https://doi.org/10.3390/rs11040449
Steinhausen, M.J., Wagner, P.D., Narasimhan, B., Waske, B., 2018. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinformation 73, 595–604. https://doi.org/10.1016/j.jag.2018.08.011
Suresh, G., Gehrke, R., Wiatr, T., Hovenbitzer, M. 2016. Synthetic Aperture Radar (Sar) Based Classifiers for land applications in Germany. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B1, 1187–1193. https://doi.org/10.5194/isprsarchives-XLI-B1-1187-2016
Szantoi, Z., Escobedo, F., Abd-Elrahman, A., Smith, S., Pearlstine, L., 2013. Analyzing fine-scale wetland composition using high resolution imagery and texture features. Int. J. Appl. Earth Obs. Geoinformation 23, 204–212. https://doi.org/10.1016/j.jag.2013.01.003
Torbick, N., Chowdhury, D., Salas, W., Qi, J., 2017. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 9, 119. https://doi.org/10.3390/rs9020119
Ullman, D.J., LeGrande, A.N., Carlson, A.E., Anslow, F.S., Licciardi, J.M., 2014. Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Clim. Past 10, 487–507. https://doi.org/10.5194/cp-10-487-2014
Useya, J., Chen, S., 2019. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data. Chin. Geogr. Sci. 29, 626–639. https://doi.org/10.1007/s11769-019-1060-0
Valcarce-Diñeiro, R., Arias-Pérez, B., Lopez-Sanchez, J.M., Sánchez, N., 2019. Multi-Temporal Dual- and Quad-Polarimetric Synthetic Aperture Radar Data for Crop-Type Mapping. Remote Sens. 11, 1518. https://doi.org/10.3390/rs11131518
Van der Sande, C.J., de Jong, S.M., de Roo, A.P.J., 2003. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int. J. Appl. Earth Obs. Geoinformation 4, 217–229. https://doi.org/10.1016/S0303-2434(03)00003-5
Van Tricht, K., Gobin, A., Gilliams, S., Piccard, I., 2018. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium. Remote Sens. 10, 1642. https://doi.org/10.3390/rs10101642
Vanniel, T., Mcvicar, T., Datt, B. 2005. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sensing of Environment, 98, 468–480. https://doi.org/10.1016/j.rse.2005.08.011
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F., Ceschia, E., 2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 199, 415–426. https://doi.org/10.1016/j.rse.2017.07.015
Whelen, T., Siqueira, P. 2017. Use of time-series L-band UAVSAR data for the classification of agricultural fields in the San Joaquin Valley. Remote Sensing of Environment, 193, 216–224. https://doi.org/10.1016/j.rse.2017.03.014
Whelen, T., Siqueira, P., 2018a. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sens. Lett. 9, 411–420. https://doi.org/10.1080/2150704X.2018.1430393
Whelen, T., Siqueira, P., 2018b. Coefficient of variation for use in crop area classification across multiple climates. Int. J. Appl. Earth Obs. Geoinformation 67, 114–122. https://doi.org/10.1016/j.jag.2017.12.014
Yan, L., Roy, D.P. 2014. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sensing of Environment, 144, 42–64. https://doi.org/10.1016/j.rse.2014.01.006
Yunjin Kim, van Zyl, J.J., 2009. A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens. 47, 2519–2527. https://doi.org/10.1109/TGRS.2009.2014944
Zakeri, H., Yamazaki, F., Liu, W. 2017. Texture Analysis and Land Cover Classification of Tehran Using Polarimetric Synthetic Aperture Radar Imagery. Applied Sciences, 7, 452. https://doi.org/10.3390/app7050452
Zeng, Y., Zhang, J., van Genderen, J.L., Zhang, Y., 2010. Image fusion for land cover change detection. Int. J. Image Data Fusion 1, 193–215. https://doi.org/10.1080/19479831003802832
Downloads
Published
Issue
Section
License
Copyright (c) 2022 El Mortaji Nizar, Miriam Wahbi, Mohamed Ait Kazzi, Otmane Yazidi Alaoui, Hakim Boulaassal, Mustapha Maatouk, Mohamed Najib Zaghloul, Omar El Kharki
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International