Cover classifications in wetlands using Sentinel-1 data (Band C): a case study in the Parana river delta, Argentina

Authors

  • Mariela Rajngewerc Universidad Nacional de San Martín https://orcid.org/0000-0001-8268-3260
  • Rafael Grimson Universidad Nacional de San Martín
  • Lucas Bali YTEC
  • Priscilla Minotti Universidad Nacional de San Martín
  • Patricia Kandus Universidad Nacional de San Martín

DOI:

https://doi.org/10.4995/raet.2022.16915

Keywords:

Grey level co-occurrence matrix, Synthetic Aperture Radar, vegetation cover, land cover, classification

Abstract

With the launch of the Sentinel-1 mission, for the first time, multitemporal and dual-polarization C-band SAR data with a short revisit time is freely available. How can we use this data to generate accurate vegetation cover maps on a local scale? Our main objective was to assess the use of multitemporal C-Band Sentinel-1 data to generate wetland vegetation maps. We considered a portion of the Lower Delta of the Paraná River wetland (Argentina). Seventy-four images were acquired and 90 datasets were created with them, each one addressing a combination of seasons (spring, autumn, winter, summer, complete set), polarization (VV, HV, both), and texture measures (included or not). For each dataset, a Random Forest classifier was trained. Then, the kappa index values (κ) obtained by the 90 classifications made were compared. Considering the datasets formed by the intensity values, for the winter dates the achieved kappa index values (κ) were higher than 0.8, while all summer datasets achieved κ up to 0.76. Including feature textures based on the GLCM showed improvements in the classifications: for the summer datasets, the κ improvements were between 9% and 22% and for winter datasets improvements were up to 15%. Our results suggest that for the analyzed context, winter is the most informative season. Moreover, for dates associated with high biomass, the textures provide complementary information.

Downloads

Download data is not yet available.

Author Biographies

Mariela Rajngewerc, Universidad Nacional de San Martín

Instituto de Investigación e Ingeniería Ambiental; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Rafael Grimson, Universidad Nacional de San Martín

Instituto de Investigación e Ingeniería Ambiental: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Lucas Bali, YTEC

YPF-CONICET

Priscilla Minotti, Universidad Nacional de San Martín

Instituto de Investigación e Ingeniería Ambiental

Patricia Kandus, Universidad Nacional de San Martín

Instituto de Investigación e Ingeniería Ambiental

References

Arsen, A., Crétaux, J. F. , Berge-Nguyen, M., del Rio, R. A., 2013. Remote Sensing-Derived Bathymetry of Lake Poopó. Remote Sensing, 6(1),407-20. https://doi.org/10.3390/rs6010407

Arzandeh, Sepideh, and Jinfei Wang, 2002. Texture Evaluation of RADARSAT Imagery for Wetland Mapping. Canadian Journal of Remote Sensing, 28(5), 653-66. https://doi.org/10.5589/m02-061

Ball, J. E., Anderson, D. T., Chan, C.S., 2017. Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools, and Challenges for the Community. Journal of Applied Remote Sensing, 11(4), 1-54. https://doi.org/10.1117/1.JRS.11.042609

Belgiu, M., Drăguţ, L., 2016. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., 2015. TerraSAR-X Dual-Pol Time-Series for Mapping of Wetland Vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 107, 90-98. https://doi.org/10.1016/j.isprsjprs.2015.05.001

Bourgeau-Chavez, L., Endres, S., Battaglia, M., Miller, M.E., Banda, E., Laubach, Z., Phyllis Higman, Chow-Fraser, P., Marcaccio, J., 2015. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery. Remote Sensing, 7(7), 8655-82. https://doi.org/10.3390/rs70708655

Breiman, L., 2001. Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324

Brisco, B., Kapfer, M., Hirose, T., Tedford, B., Liu, J., 2011. Evaluation of C-Band Polarization Diversity and Polarimetry for Wetland Mapping. Canadian Journal of Remote Sensing, 37(1), 82-92. https://doi.org/10.5589/m11-017

Caballero, G. R., Platzeck, G., Pezzola, A., Casella, A., Winschel, C., Silva, S. S., Ludueña, E., Pasqualotto, N., Delegido, J., 2020. Assessment of Multi-Date Sentinel-1 Polarizations and GLCM Texture Features Capacity for Onion and Sunflower Classification in an Irrigated Valley: An Object Level Approach. Agronomy, 10(6), 845. https://doi.org/10.3390/agronomy10060845

Congalton, R. G., Green, K., 2005. Assessing the Accuracy of Remotely Sensed Data Principles and Practices. Florida: Taylor & Francis.

Dabboor, M., Brisco, B., 2018. Wetland Monitoring and Mapping Using Synthetic Aperture Radar, Wetlands Management. Assessing Risk and Sustainable Solutions. IntechOpen. https://doi.org/10.5772/intechopen.80224

ESA Sentinel Application Platform. 2019. SNAP. Version 6. http://step.esa.int

Filipponi, F., 2019. Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi.org/10.3390/ECRS-3-06201

Gallant, A. L., 2015. The Challenges of Remote Monitoring of Wetlands. Remote Sensing, 7(8), 10938-50. https://doi.org/10.3390/rs70810938

Gong, P., Marceau, D. J., Howarth, P. J., 1992. A Comparison of Spatial Feature Extraction Algorithms for Land-Use Classification with SPOT HRV Data, 40(2), 137-151. https://doi.org/10.1016/0034-4257(92)90011-8

Grimson, R., Morandeira, N.S., Gayol, M. P., Kandus, P., 2019. Freshwater Marsh Classification in the Lower Paraná River Floodplain: An Object-Based Approach on Multitemporal X-Band COSMO-SkyMed Data. Journal of Applied Remote Sensing, 13(1), 1-14. https://doi.org/10.1117/1.JRS.13.014531

Grings, F. M., Ferrazzoli, P., Jacobo-Berlles, J. C., Karszenbaum, H., Tiffenberg, J., Pratolongo, P., Kandus, P., 2006. Monitoring Flood Condition in Marshes Using EM Models and Envisat ASAR Observations. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 936-42. https://doi.org/10.1109/TGRS.2005.863482

Hall-Beyer, M., 2017. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of Moderate Spatial Scales. International Journal of Remote Sensing, 38(5), 1312-38. https://doi.org/10.1080/01431161.2016.1278314

Haralick, R. M., 1979. Statistical and Structural Approaches to Texture. Proceedings of the IEEE, 67(5), 786-804. https://doi.org/10.1109/PROC.1979.11328

Hess, L. L., Melack, J. M., Novo, E. M. L. M., Barbosa, C. C. F., Gastil, M., 2003. Dual-Season Mapping of Wetland Inundation and Vegetation for the Central Amazon Basin. Remote Sensing of Environment, 87(4), 404-28. https://doi.org/10.1016/j.rse.2003.04.001

Huang, C., L. S. D., Townshend, J. R. G., 2002. An Assessment of Support Vector Machines for Land Cover Classification. International Journal of Remote Sensing, 23(4), 725-49. https://doi.org/10.1080/01431160110040323

James, G., Witten, D., Hastie, T., Tibshirani, R., 2021. An Introduction to Statistical Learning with Applications in R Second Edition. New York: Springer. https://doi.org/10.1007/978-1-0716-1418-1

Kandus, P., Malvárez, A.I. 2004. Vegetation Patterns and Change Analysis in the Lower Delta Islands of the Paraná River (Argentina). Wetlands, 24(3), 620-632. https://doi.org/10.1672/0277-5212(2004)024[0620:VPACAI]2.0.CO;2

Kandus, P., Karszenbaum, H., Frulla, L. 1999. Land Cover Classification System for the Lower Delta of the Paraná River (Argentina): Its Relationship with Landsat Thematic Mapper Spectral Classes. Journal of Coastal Research, 15(4), 909-926.

Kandus, P., Karszenbaum, H., Pultz, T., Parmuchi, G., Bava, J. 2001. Influence of Flood Conditions and Vegetation Status on the Radar Backscatter of Wetland Ecosystems. Canadian Journal of Remote Sensing, 27, 651-662. https://doi.org/10.1080/07038992.2001.10854907

Kandus, P., Malvárez, A.I., Madanes, N. 2003. Estudio de Las Comunidades de Plantas Herbáceas de Las Islas Bonaerenses Del Bajo Delta Del Río Paraná (Argentina). Darwiniana, 41(1-4), 1-16.

Kandus, P., Quintana, R.D., Bó, R.F. 2006. Patrones de Paisaje y Biodiversidad Del Bajo Delta Del Río Paraná. Mapa de Ambientes. Buenos Aires: Wetlands International.

Krishna, G.B., Mittal, V. 2018. Land Cover Classification of Full Polarimetric PALSAR Images using Decision Tree based on Intensity and Texture Statistical Features. International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), 2018, pp. 739-744. https://doi.org/10.1109/ICRIEECE44171.2018.9009289

Kupidura, P., 2019. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery. Remote Sensing, 11(10), 1233. https://doi.org/10.3390/rs11101233

Kurvonen, L., Pulliainen, J., Hallikainen, M., 1999. Retrieval of Biomass in Boreal Forests from Multitemporal ERS-1 and JERS-1 SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 198-205. https://doi.org/10.1109/36.739154

Larocque, A., Leblon, B., Woodward, R., Bourgeau-Chavez, L., 2020. Wetland Mapping in New Brunswick, Canada with Landsat5-Tm, Alos-Palsar, and Radarsat-2 Imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5, 301-308. https://doi.org/10.5194/isprs-annals-V-3-2020-301-2020

LaRocque, A., Phiri, C., Leblon, B., Pirotti, F., Connor, K., Hanson, A., 2020. Wetland Mapping with Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and LiDAR Data in Southern New Brunswick, Canada. Remote Sensing, 12(13), 2095. https://doi.org/10.3390/rs12132095

Lehner, B., Döll, P., 2004. Development and Validation of a Global Database of Lakes, Reservoirs and Wetlands. Journal of Hydrology, 296(1-4), 1-22. https://doi.org/10.1016/j.jhydrol.2004.03.028

Lin K-F, Perissin D. 2018. Single-Polarized SAR Classification Based on a Multi-Temporal Image Stack. Remote Sensing, 10(7), 1087. https://doi.org/10.3390/rs10071087

Lloyd, C. D., Berberoglu, S., Curran, P. J., Atkinson, P. M., 2004. A Comparison of Texture Measures for the Per-Field Classification of Mediterranean Land Cover. International Journal of Remote Sensing, 25(19), 3943-65. https://doi.org/10.1080/0143116042000192321

Lu, D., Weng, Q., 2007. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. International Journal of Remote Sensing, 28(5), 823-70. https://doi.org/10.1080/01431160600746456

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S., Gill, E., DeLancey, E.R, Bourgeau-Chavez, L., 2020. Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Canadian Journal of Remote Sensing, 46(1), 15-33. https://doi.org/10.1080/07038992.2019.1711366

Marti-Cardona, B., Lopez-Martinez, C., Dolz-Ripolles, J., Bladè-Castellet, E., 2010. ASAR Polarimetric, Multi-Incidence Angle and Multitemporal Characterization of Doñana Wetlands for Flood Extent Monitoring. Remote Sensing of Environment, 114(11), 2802-15. https://doi.org/10.1016/j.rse.2010.06.015

McNemar, Quinn. 1947. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika, 12(2). https://doi.org/10.1007/BF02295996

Meyer, F. J., 2019. Spaceborne Synthetic Aperture Radar"¯: Principles , Data Access , and Basic Processing Techniques. in SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. NASA.

Mishra, V. N., Prasad, R., Rai, P. K., Vishwakarma, A. K., Arora, A., 2019. Performance Evaluation of Textural Features in Improving Land Use/Land Cover Classification Accuracy of Heterogeneous Landscape Using Multi-Sensor Remote Sensing Data. Earth Science Informatics, 12(1), 71-86. https://doi.org/10.1007/s12145-018-0369-z

Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., Motagh, M., 2018. Multi-Temporal, Multi-Frequency, and Multi-Polarization Coherence and SAR Backscatter Analysis of Wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 78-93. https://doi.org/10.1016/j.isprsjprs.2018.05.009

Morandeira, N.S., Grimson, R., Kandus, P. 2016. Assessment of SAR speckle filters in the context of object-based image analysis. Remote Sensing Letters, 7(2), 150-159. https://doi.org/10.1080/2150704X.2015.1117153

Morandeira, N.S., Barber, M.E., Grings, F.M., Ahern, F., Kandus, P., Brisco, B. 2021. Response of MultiIncidence Angle Polarimetric RADARSAT-2 Data to Herbaceous Vegetation Features in the Lower Paraná River Floodplain, Argentina. Remote Sensing, 13(13), 2518. https://doi.org/10.3390/rs13132518

Mueller, M. M., Dubois, C., Jagdhuber, T., Pathe, C., Schmullius, C., 2021. Investigation of Sentinel-1 time series for sensitivity to fern vegetation in an european temperate forest. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2021, 127-34. https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-127-2021

Numbisi, F. N., Van Coillie, F., De Wulf, R., 2018. Multi-Date Sentinel1 SAR Image Textures Discriminate Perennial Agroforests in a Tropical Forest-Savannah Transition Landscape. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42, 339-346. https://doi.org/10.5194/isprs-archives-XLII-1-339-2018

Numbisi, F. N., Van Coillie, F., De Wulf, R., 2019. Delineation of Cocoa Agroforests Using Multiseason Sentinel-1 SAR Images: A Low Grey Level Range Reduces Uncertainties in GLCM Texture-Based Mapping. ISPRS International Journal of Geo-Information, 8(4), 179. https://doi.org/10.3390/ijgi8040179

Numbisi, F. N., Van Coillie, F., 2020. Does Sentinel-1A Backscatter Capture the Spatial Variability in Canopy Gaps of Tropical Agroforests? A Proof-of-Concept in Cocoa Landscapes in Cameroon. Remote Sensing, 12(24), 1-29. https://doi.org/10.3390/rs12244163

Nyoungui, A. N., E. Tonye, Akono, A., 2002. Evaluation of Speckle Filtering and Texture Analysis Methods for Land Cover Classification from SAR Images. International Journal of Remote Sensing, 23(9), 1895-1925. https://doi.org/10.1080/01431160110036157

Oliver, C., Quegan. S., 2004. Understanding Synthetic Aperture Radar Images. Raleigh: SciTech.

Ozesmi, S.L., Bauer, M.E. 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10, 381-402. https://doi.org/10.1023/A:1020908432489

Otukei, J.R., Blaschke, T. 2010. Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms. International Journal of Applied Earth Observation and Geoinformation, 12(1), S27-S31. https://doi.org/10.1016/j.jag.2009.11.002

Pal, M., 2005. Random Forest Classifier for Remote Sensing Classification. International Journal of Remote Sensing, 26(1), 217-22. https://doi.org/10.1080/01431160412331269698

Panuju D.R., Paull, D.J., Trisasongko, B.H. 2019. Combining Binary and Post-Classification Change Analysis of Augmented ALOS Backscatter for Identifying Subtle Land Cover Changes. Remote Sensing, 11(1), 100. https://doi.org/10.3390/rs11010100

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchescay, E., 2011. Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2850-2830.

Planet Team. 2017. Planet Application Program Interface: In Space for Life on Earth.

Pulella, A., Sica, F., Rizzoli, P., 2020. Monthly Deforestation Monitoring with Sentinel-1 Multi-Temporal Signatures and InSAR Coherences. Revista de Teledetección, 0(56), 1-22. https://doi.org/10.4995/raet.2020.14308

Reid, W., Mooney, H.,Cropper, A., Capistrano, D., Carpenter, S., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A., Hassan, R., Kasperson, R., Leemans, R., May, R., Mcmichael, A., Pingali, P., Samper, C., Scholes, R., Watson, R., Zakri, A. H. Zurek, M., 2005. Millenium Ecosystem Assessment Synthesis Report.

Salvia, M., Grings, F., Karszenbaum, H., Ferrazzoli, P., Kandus, P., Soldano, A., Guerriero, L., 2008. Monitoring Inundation Dynamics in Parana River, Argentina, by C and L Band SAR. International Geoscience and Remote Sensing Symposium (IGARSS), 1, 102-105.

https://doi.org/10.1109/IGARSS.2008.4778803

Salvia, M. M., Karszenbaum, H., Kandus, P., Grings, F. M., 2009. Datos Satelitales Ópticos y de Radar Para El Mapeo de Ambientes En Macrosistemas de Humedal. Revista de Teledetección, 31, 35-51.

Sivasankar, T., Kumar, D., Srivastava, H. S., Patel, P., 2018. Advances in Radar Remote Sensing of Agricultural Crops: A Review. International Journal on Advanced Science, Engineering and Information Technology, 8(4), 1126-37. https://doi.org/10.18517/ijaseit.8.4.5797

Treitz, P. M., Howarth, P. J. , Filho, O. R., Soulis, E. D., 2000. Agricultural Crop Classification Using SAR Tone and Texture Statistics. Canadian Journal of Remote Sensing, 26(1), 18-29. https://doi.org/10.1080/07038992.2000.10874751

Tsyganskaya, V., Martinis, S., Marzahn, P, Ludwig, R., 2018. Detection of Temporary Flooded Vegetation Using Sentinel-1 Time Series Data. Remote Sensing, 10(8), 1286. https://doi.org/10.3390/rs10081286

Vanama, V. S. K., Mandal, D., Rao., Y. S., 2020. GEE4FLOOD: Rapid Mapping of Flood Areas Using Temporal Sentinel-1 SAR Images with Google Earth Engine Cloud Platform. Journal of Applied Remote Sensing, 14(3), 1-23. https://doi.org/10.1117/1.JRS.14.034505

Downloads

Published

2022-07-26

Issue

Section

Research articles