Estimation of the subsidence around the trace of the San Ramón Chile fault, using the SBAS DInSAR technique through TerraSAR-X images
DOI:
https://doi.org/10.4995/raet.2022.15640Keywords:
San Ramon Fault, SBAS, subsidences, differencial interferometryAbstract
Chile is one of the countries with the highest seismicity in the world and is affected by three types of seismogenic sources; interplate, intraplate and superficial or cortical intraplate. In this context, in the eastern sector of the city of Santiago, capital of Chile, the Falla San Ramón (FSR) is located. It is a cortical seismogenic source, which threatens its habitants and the various economic activities that are located in that sector, geological hazards such as earthquakes and mass removals. In relation to the above, this study aims to identify and establish the subsidence areas in a longitudinal strip of the Santiago mountain front and its impact on the neighboring communes to the FSR trace during the years 2011 to 2017. To do this, The DInSAR technique was used with the Small Baseline Subset (SBAS) algorithm through a time series of images from the TerraSAR-X (TSX) satellite. The results show subsidence zones, with average displacements ranging from -13.11 mm to +9.89 mm, with an average annual speed rate of -2.19 to +1.65 mm/year.
Downloads
References
Abidin, H.Z., Andreas, H., Gumilar, I., Sidiq, T.P., Fukuda, Y.. 2013. Land subsidence in coastal city of Semarang ( Indonesia ): characteristics , impacts and causes.Geomatics, Natural Hazards and Risk, 4(3), 226-240. https://doi.org/10.1080/19475705.2012.692336
Ammirati, J.B., Vargas, G., Rebolledo, S., Abrahami, R., Potin, B., Leyton, F., Ruiz, S. 2019. The Crustal Seismicity of the Western Andean Thrust (Central Chile, 33°-34° S ): Implications for Regional Tectonics and Seismic Hazard in the Santiago Area. Bulletin of the Seismological Society of America 109(5), 1985- 1999. https://doi.org/10.1785/0120190082
Armijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, R., and Kausel, E. 2010. The West Andean Thrust , the San Ramón Fault , and the seismic hazard for Santiago, Chile. Tectonisc, 29(2), 1-34. https://doi.org/10.1029/2008TC002427
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. In IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. https://doi.org/10.1109/TGRS.2002.803792
Braun, A. (2020). Sentinel-1 Toolbox: DEM generation with Sentinel-1 Workflow and challenges. ESA online publications, 27 p.
Cabral-Cano, E., Osmanoglu, B., Dixon, T., Wdowinski, S., Demets, C., Cigna, F., Díaz-Molina, O. 2010. Subsidence and fault hazard maps using PSI and permanent GPS networks in central Mexico. In Land Subsidence, Associated Hazards and the Role of Natural Resources Development (p. 255-259). (IAHS-AISH Publication; Vol. 339).
Cakir, Z., Akoglu, A.M., Belabbes, S., Ergintav, S., Meghraoui, M. 2005. Creeping along the Ismetpasa section of the North Anatolian fault (Western Turkey): Rate and extent from InSAR. Earth and Planetary Science Letters, 238(1-2), 225-234. https://doi.org/10.1016/j.epsl.2005.06.044
Casu F., Manzo M., Lanari, R. 2006. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 102 (3-4), 195-210. https://doi.org/10.1016/j.rse.2006.01.023
Costantini, M. 1998. A novel phase unwrapping method based on network programming. In IEEE Transactions on Geoscience and Remote Sensing, 36(3), 813-821. https://doi.org/10.1109/36.673674
Crosetto, M., Tscherning, C.C., Crippa, B., Castillo, M. 2002. Subsidence monitoring using SAR interferometry: Reduction of the atmospheric effects using stochastic filtering. Geophysical Research Letters, 29(9), 26-1-26-4. https://doi.org/10.1029/2001GL013544
Fernandez, P., Irigaray, C., Jimenez, J., El Hamdouni, R., Crosetto, M., Monserrat, O., Chacon, J. 2009. First delimitation of areas affected by ground deformations in the Guadalfeo River Valley and Granada metropolitan area (Spain) using the DInSAR technique. Engineering Geology, 105(1-2), 84-101. https://doi.org/10.1016/j.enggeo.2008.12.005
Ferretti, A., Monti-guarnieri, A., Milano, P. 2007. InSAR Principles - Guidelines for SAR Interferometry Processing and Interpretation SAR Interferometry Processing and Interpretation. ESA Publications, TM-19 . ISBN 92-9092-233-8.
Galloway, D.L., Hoffmann, J. 2007. The application of satellite differential SAR interferometry- derived ground displacements in hydrogeology. Hydrogeology Journal, 15, 133-154. https://doi.org/10.1007/s10040-006-0121-5
Hanssen, R.F. 2001. Radar interferometry: Data Interpretation and Error Analysis (Vol. 2). Springer Science, Dordrecht, 308 p. https://doi.org/10.1007/0- 306-47633-9
Hermosilla Díaz, D.E. 2016. Interferometría Radar de Apertura Sintética (INSAR) aplicada al Estudio del movimiento de ladera aledaña al Volcán Calbuco con la ayuda de imágenes Sentinel 1A. Tesis para optar al Título de Ingeniero en Aviación Comercial, Academia de Ciencias Aeronáuticas, Universidad Federico Santa María, Chile, 82 p.
INE. 2017. Resultados Censo de Población y Vivienda 2017. Instituto Nacional de Estadísticas, Santiago,Chile.
Lagios, E., Sakkas, V., Papadimitriou, P., Parcharidis, I., Damiata, B.N., Chousianitis, K., Vassilopoulou, S. 2007. Crustal deformation in the Central Ionian Islands (Greece): Results from DGPS and DInSAR analyses (1995-2006). Tectonophysics, 444(1-4), 119-145. https://doi.org/10.1016/j.tecto.2007.08.018
Lakhote, A., Thakkar, M.G., Kandregula, R.S., Jani, C., Kothyari, G.C., Chauhan, G., Bhandari, S. 2020. Estimation of active surface deformation in the eastern Kachchh region, western India: Application of multi-sensor DInSAR technique. Quaternary International, 575-576, 130-140. https://doi.org/10.1016/j.quaint.2020.07.010
Osmanoglu, B., Dixon, T.H., Wdowinski, S., Cabral-Cano, E., Jiang, Y. 2010. Mexico City subsidence observed with Persistent Scatterer InSAR. International Journal Applied Earth Observation and Geoinfomation, 13(1), 1-12. https://doi.org/10.1016/j.jag.2010.05.009
Parcharidis, I., Kokkalas, S., Fountoulis, I., and Foumelis, M. 2009. Detection and Monitoring of Active Faults in Urban Environments: Time Series Interferometry on the Cities of Patras and Pyrgos (Peloponnese, Greece). Remote Sensing, 1(4), 676-696. https://doi.org/10.3390/rs1040676
Rauld, R. 2011. Deformación cortical y peligro sísmico asociado a la falla San Ramón en el frente cordillerano de Santiago, Chile Central (33° S). Tesis para optar al Grado de Doctor en Ciencias Mención Geología, Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 445 p.
Rodríguez, E., Morris, C.S., Belz, J.E., Chapin, E.C., Martin, J.M., Daffer, W., Hensley, S. 2005. An Assessment of the SRTM Topographic Products. Technical report JPL D-31639. Pasadena, CA: Jet Propulsion Laboratory, NASA.
Sánchez, C. Monells, D, Manso A., Farías, E. 2016. Aplicación de metodología InSAR en la detección de deformaciones en el cráter de subsidencia y entorno minero. Caso de Estudio: Codelco Mina Andina. In 1ˢáµ— International Conference of Underground Mining, October 19-21, Santiago, Chile.
Sarmap SA. 2017. SARscape 5.1 Help Manual. Section 1.7.3.
Seppi, S. 2016. Uso de interferometría diferencial para monitorear deformaciones de terreno en la comuna de Corvara, Provincia de Bolzano, Italia. Tesis para Optar al Grado de Magíster en Aplicaciones Espaciales de Alerta y Respuesta Temprana a Emergencias, Universidad Nacional de Córdoba,Argentina, IG-CONAE/UNC.
Solano-Rojas, D., Cabral-Cano, E., Hernández-Espriú, A., Wdowinski, S., Demets, C., Salazar-Tlaczani, L., Falorni, G., Bohane, A. 2015. La relación de subsidencia del terreno InSAR-GPS y el abatimiento del nivel estático en pozos de la zona Metropolitana de la Ciudad de México. Boletín de la Sociedad Geológica Mexicana, 67(2).
https://doi.org/10.18268/BSGM2015v67n2a10
Tobita, M., Nishimura, T., Kobayashi, T., Hao, K.X., Shindo, Y. 2011. Estimation of coseismic deformation and a fault model of the 2010 Yushu earthquake using PALSAR interferometry data. Earth and Planetary Science Letters, 307(3-4), 430-438. https://doi.org/10.1016/j.epsl.2011.05.017
Valenzuela, G. (1978). Suelo de Fundación de Santiago. Instituto de Investigaciones Geológicas, 33(Boletín N°33), 21.
Vargas, G., Rebolledo, S. 2015. La Falla San Ramón y el peligro sísmico de Santiago: Nuevos antecedentes morfoestratigráficos e implicancias normativas. In XIV Congreso Geológico Chileno, 4-8 Octubre, La Serena, Chile, p. 379-381 (Vol. 1).
Vergara, L., Verdugo, R. 2015. Condiciones geológicas-geotécnicas de la cuenca de Santiago y su relación con la distribución de daños del terremoto del 27F. Obras y Proyectos, 17, 52-59. https://doi.org/10.4067/S0718-28132015000100007
Wall, R., Sellés, D.G. 1999. Área Titil-Santiago, Región Metropolitana. Servicio Nacional de Geología y Minería. Mapa Geológico N°11, escala 1:100.000.
Yastika, P.E., Shimizu, N., Abidin, H.Z. 2019. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang , Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Advances in Space Research, 63(5), 1719-1736. https://doi.org/10.1016/j.asr.2018.11.008
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International