Application of a simplified methodology to estimate reservoir capacity curves


  • Santiago A. Ochoa-García Universidad Católica de Cuenca



height, volume, area, sedimentation


In the management of the regulation volumes of the water resource projected for a variety of benefits (hydroelectric uses, irrigation, drinking water, among others), it is essential to calculate the morphometric variables of the reservoirs to anticipate changes in their morphology and predict how these changes could affect projected achievement. In this document, taking into consideration the fundamental concepts of Integral Calculus, the development of an innovative methodology is presented to obtain the Cota-Volume and Cota-Area curves in reservoirs; the methodology was formulated in R programming language with the help of geographic information tools. A computational optimization was achieved for the processing of the variables of level, area and volume of a regulation body respect to the use of traditional methodologies. To validate the developed tool, the capacity curves of regulation volume of the Minas - San Francisco reservoir located in the south of the Republic of Ecuador were obtained. This reservoir was designed to dislodge its sediments with washing processes. This fact has motivated the continuous monitoring of the morphological conditions of the reservoir to plan maintenance processes due to the loss of volume and to the deposit of particles from its tributaries. In addition, an analysis based on wavelets curves was applied to the digital elevation models obtained from LiDAR techniques and bathymetric echo sounder to demonstrate the sedimentation processes that occur in this body of regulation.


Download data is not yet available.

Author Biography

Santiago A. Ochoa-García, Universidad Católica de Cuenca

Docente Investigador

Unidad Académica de Ingeniería Industria y Construcción

Urban and Earth Data Science Research Group


Catano-Lopera, Y., Abad, J.D., Garcia, M.H. 2009. Characterization of Bedform Morphology Generated under Combined Flows and Currents Using Wavelet Analysis. Ocean Engineering, 36, 617–632. https://

CELEC E.P. 2021. Empresa Pública Estratégica Corporación Eléctrica del Ecuador, Unidad de Negocio CELECSUR. celecsur/

Flemming, B.W. 2000. The Role of Grain Size, Water Depth and Flow Velocity as Scaling Factors Controlling the Size of Subaqueous Dunes. Marine Sandwave Dynamics. Lille, France.

Fuska, J., Kubinský, D., Weis, K., Lackóová, L., Pokrývková, J., Leitmanová, M., Panagopoulos, T. 2017. Area-Storage Capacity Curve of Historic Artificial Water Reservoir Ottergrund, Slovakia – Assessment of the Historical Data with the Use of Gis Tools. Journal of Ecological Engineering, 18(1), 48–56.

Gutierrez, R.R., Abad, J.D., Parsons, D.R., Best, J.L. 2013. Discrimination of Bed Form Scales Using Robust Spline Filters and Wavelet Transforms: Methods and Application to Synthetic Signals and Bed Forms of the Río Parana, Argentina. Journal of Geophysical Research: Earth Surface, 118(3), 1400–1418.

Gutierrez, R.R., Mallma, J.A., Nuñez-Gonzalez, F., Link, O.; Abad, J.D. 2018. Bedforms-ATM, an open source software to analyze the scale-based hierarchies and dimensionality of natural bed forms. SoftwareX, 7, 184–189,

Hakanson, L. 1981. A Manual of Lake Morphometry. Berlin, Heidelberg, New York: Springer-Verlag.

Hollister, J., Stachelek, J. 2017. Lakemorpho: Calculating lake morphometry metrics in R. F1000Research, 6, 1718. f1000research.12512.1

Jerolmack, D., Mohrig, D. 2005. Interactions Between Bed Forms: Topography, Turbulence and Transport. Journal of Geophysical Research, 110, F02014.

Leithold, L. 1994. The Calculus 7. Interests International, Inc. ISBN 0-673-46913-1.

Patil, R., Shetkar, R. 2016. Prediction of Sediment Deposition in Reservoir Using Analytical Method. American Journal of Civil Engineering, 4(6), 290– 297.

Paredes, C.U., Salinas, E.E., Martínez, X., Jiménez, S.B. 2013. Evaluación y comparación de métodos de interpolación determinísticos y probabilísticos para la generación de modelos digitales de elevación. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM. 82, 118–130.

PROMAS. 2013. Estudio en modelo físico para el proyecto hidroeléctrico Minas - San Francisco. Informe Definitivo, Construcción y Calibración. Universidad de Cuenca y Empresa Pública Estratégica Corporación Eléctrica del Ecuador, Unidad de Negocio ENERJUBONES.

Singh, A., Lanzoni, S., Wilcock, P.R., Foufoula-Georgiou, E. 2011. Multiscale Statistical Characterization of Migrating Bed Forms in Gravel and Sand Bed Rivers. Water Resources Research, 47, W12526.

Torrence, C., Compo, G.P. 1998. A Practical Guide to Wavelet Analysis. American Meteorological Society, 79(1), 61–78. 0477(1998)079%3C0061:APGTWA%3E2.0.CO;2

Venkatesan, V., Balamurugan, R., Krishnaveni, M. 2012. Establishing Water Surface Area-Storage Capacity Relationship of Small Tanks Using SRTM and GPS. International Conference on Future Energy, Environment, and Materials. Energy Procedia 16, 1167–1173. egypro.2012.01.186

Wernly, J.F., Zajd, H.J., Coon, W.F. 2016. Bathymetric survey and estimation of storage capacity of lower Sixmile Creek reservoir, Ithaca, New York. U.S. Geological Survey Open-File Report 2016–1157.

Wilson, G.L., Richards, J.M. 2006. Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs. U.S. Geological Survey Scientific Investigations Report 2006–5208.

Xu, Y., Weaver, J.B., Healy, D.M., Lu, J. 1994. Wavelet Transform Domain Filters: A Spatially Selective Noise Filtration Technique. IEEE Transactions on Image Processing, 3(6), 747–758.

Yakubu, M.L., Abdurrahman, U.T., Ahmed, M.T, Aliyu, A.S., Zango, M.U., Maihula, A. S. 2015. The Progressive response of Sahelian Dams to Sediment Intrusion: Case of Kano State Between 1976 and 2009. Applied Mechanics and Materials, 773–774, 1301–1306.





Practical cases