Evaluation of classification algorithms in the Google Earth Engine platform for the identification and change detection of rural and periurban buildings from very high-resolution images

Authors

DOI:

https://doi.org/10.4995/raet.2021.15026

Keywords:

classification, buildings, cadastre, cloud computing, machine learning, deep learning

Abstract

Building change detection based on remote sensing imagery is a key task for land management and planning e.g., detection of illegal settlements, updating land records and disaster response. Under the post- classification comparison approach, this research aimed to evaluate the feasibility of several classification algorithms to identify and capture buildings and their change between two time steps using very-high resolution images (<1 m/pixel) across rural areas and urban/rural perimeter boundaries. Through an App implemented on the Google Earth Engine (GEE) platform, we selected two study areas in Colombia with different images and input data. In total, eight traditional classification algorithms, three unsupervised (K-means, X-Means y Cascade K-Means) and five supervised (Random Forest, Support Vector Machine, Naive Bayes, GMO maximum Entropy and Minimum distance) available at GEE were trained. Additionally, a deep neural network named Feature Pyramid Networks (FPN) was added and trained using a pre-trained model, EfficientNetB3 model. Three evaluation zones per study area were proposed to quantify the performance of the algorithms through the Intersection over Union (IoU) metric. This metric, with a range between 0 and 1, represents the degree of overlapping between two regions, where the higher agreement the higher IoU values. The results indicate that the models configured with the FPN network have the best performance followed by the traditional supervised algorithms. The performance differences were specific to the study area. For the rural area, the best FPN configuration obtained an IoU averaged for both time steps of 0.4, being this four times higher than the best supervised model, Support Vector Machines using a linear kernel with an average IoU of 0.1. Regarding the setting of urban/rural perimeter boundaries, this difference was less marked, having an average IoU of 0.53 in comparison to 0.38 obtained by the best supervised classification model, in this case Random Forest. The results are relevant for institutions tracking the dynamics of building areas from cloud computing platfo future assessments of classifiers in likewise platforms in other contexts.

Downloads

Download data is not yet available.

Author Biographies

Alejandro Coca-Castro, Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica, Instituto Geográfico Agustín Codazzi

Doctor en Geografía con Maestría en Monitoreo, Modelación y Gestión Ambiental en King’s College London. Con 9+ años de experiencia laboral y docencia. Involucrado en varios proyectos apoyados por los Sistemas de Información Geográfica (SIG) y la teledetección para la toma de decisiones en políticas de tenencia y cambio de la tierra (ordenamiento territorial) a múltiples escalas. Con habilidades en el uso de una variedad de software SIG y un conocimiento sólido de estadística, minería y ciencia de datos, análisis espacial y automatización de tareas de datos complejas y de grandes volúmenes de datos usando tecnologías emergentes (Big data y procesamiento en la nube).

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

Maycol A. Zaraza-Aguilera, Instituto Geográfico Agustín Codazzi

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

Yilsey T. Benavides-Miranda, Instituto Geográfico Agustín Codazzi

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

Yeimy M. Montilla-Montilla, Instituto Geográfico Agustín Codazzi

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

Heidy B. Posada-Fandiño, Instituto Geográfico Agustín Codazzi

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

Angie L. Avendaño-Gomez, Instituto Geográfico Agustín Codazzi

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

Hernando A. Hernández-Hamon, Instituto Geográfico Agustín Codazzi

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

Sonia C. Garzón-Martinez, Instituto Geográfico Agustín Codazzi

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

Carlos A. Franco-Prieto, Instituto Geográfico Agustín Codazzi

Grupo Investigación, Desarrollo e Innovación del Centro de Investigación y Desarrollo en Información Geográfica

References

Abraham, N., Khan, N.M. 2019. A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Venecia, Italia, 8-11 Abril. pp. 683–687. https://doi.org/10.1109/ISBI.2019.8759329

Chaurasia, A., Culurciello, E. 2018. LinkNet: Exploiting encoder representations for efficient semantic segmentation. 2017 IEEE Visual Communications and Image Processing, VCIP 2017. St. Petersburg, USA, 10-13 Diciembre. https://doi.org/10.1109/VCIP.2017.8305148

Daudt, R.C., Le Saux, B., Boulch, A., Gousseau, Y. 2018. Urban change detection for multispectral earth observation using convolutional neural networks. International Geoscience and Remote Sensing Symposium (IGARSS). Valencia, España, 22-27 Julio. pp. 2115–2118. https://doi.org/10.1109/ IGARSS.2018.8518015

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Gram-Hansen, B.J., Helber, P., Varatharajan, I., Azam, F., Coca-Castro, A., Kopackova, V., Bilinski, P. 2019. Mapping informal settlements in developing countries using machine learning and low resolution multi-spectral data. AIES 2019 - Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. Honolulu, USA, 27-28 Enero. https://doi.org/10.1145/3306618.3314253

Han, Y., Javed, A., Jung, S., Liu, S. 2020. Object-Based Change Detection of Very High Resolution Images by Fusing Pixel-Based Change Detection Results Using Weighted Dempster–Shafer Theory. Remote Sensing, 12(6), 983. https://doi.org/10.3390/rs12060983

He, H., Zhou, J., Chen, M., Chen, T., Li, D., Cheng, P. 2019. Building Extraction from UAV Images Jointly Using 6D-SLIC and Multiscale Siamese Convolutional Networks. Remote Sensing, 11(9), 1040. https://doi.org/10.3390/rs11091040

Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D. 2013. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91–106. https://doi.org/10.1016/j.isprsjprs.2013.03.006

Instituto Geográfico Agustín Codazzi - IGAC. 2020. Resolución 388, https://www.igac.gov.co/es/ noticias/resolucion-388-del-13-de-abril-de-2020

Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bulletin de La Société Vaudoise Des Sciences Naturelles, 44(163), 223-270.

Jiang, H., Hu, X., Li, K., Zhang, J., Gong, J., Zhang, M. 2020. PGA-SiamNet: Pyramid feature- based attention-guided siamese network for remote sensing orthoimagery building change detection. Remote Sensing, 12(3), 1–21. https://doi.org/10.3390/rs12030484

Kingma, D.P., Ba, J. (2014, December 22). Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. San Diego, USA, 7-9 Mayo.

Li, L.-J., Li, K., Li, F.F., Deng, J., Dong, W., Socher, R., Fei-Fei, L. 2009. ImageNet: a Large-Scale Hierarchical Image Database Shrimp Project View project hybrid intrusion detction systems View project ImageNet: A Large-Scale Hierarchical Image Database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 20-25 Junio.

Li, Q., Shi, Y., Huang, X., Zhu, X.X. 2020. Building Footprint Generation by Integrating Convolution Neural Network With Feature Pairwise Conditional Random Field (FPCRF). IEEE Transactions on Geoscience and Remote Sensing, 1–18. https://doi.org/10.1109/TGRS.2020.2973720

Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S. 2017. Feature pyramid networks for object detection. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. Honolulu, USA, 21-26 Julio. pp 2117-2125. https://doi.org/10.1109/CVPR.2017.106

Liu, Y., Pang, C., Zhan, Z., Zhang, X., Yang, X. 2019. Building Change Detection for Remote Sensing Images Using a Dual Task Constrained Deep Siamese Convolutional Network Model. Recuperado de: arXiv. Último acceso: 22 de Diciembre, 2020, de http://arxiv.org/abs/1909.07726

Lyu, H., Lu, H., Mou, L., Li, W., Wright, J., Li, X., Li, X., Zhu, X., Wang, J., Yu, L., Gong, P. 2018. Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data. Remote Sensing, 10(3), 471. https://doi.org/10.3390/rs10030471

Ma, L., Li, M., Blaschke, T., Ma, X., Tiede, D., Cheng, L., Chen, Z., Chen, D. 2016. Object-based change detection in Urban Areas: The effects of segmentation strategy, scale, and feature space on unsupervised methods. Remote Sensing, 8(9), 1–18. https://doi.org/10.3390/rs8090761

Parmar, V., Bhatia, N., Negi, S., Suri, M. 2020. Exploration of Optimized Semantic Segmentation Architectures for edge-Deployment on Drones. Recuperado de: arXiv. Último acceso: 18 de Abril, 2021, http://arxiv.org/abs/2007.02839

Pinzón-Rodríguez, O.A., Sanabria-García, J.C. 2017. Determinación de zonas geoeconómicas para el proyecto “Construcción, rehabilitación, operación y mantenimiento y revisión del sistema vial para la conexión de los departamentos del Cesar y la Guajira”. Universidad Distrital Francisco José de Caldas. http://hdl.handle.net/11349/7752

Ronneberger, O., Fischer, P., Brox, T. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI: Medical Image Computing and Computer-Assisted Intervention. Munich, Alemania, 5-9 Octubre. pp. 234–241. https://doi. org/10.1007/978-3-319-24574-4_28

Rußwurm, M., Körner, M. 2018. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders. ISPRS International Journal of Geo- Information, 7(4), 129. https://doi.org/10.3390/ ijgi7040129

Vargas-Muñoz, J.E., Lobry, S., Falcão, A.X., Tuia, D. 2019. Correcting rural building annotations in OpenStreetMap using convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 283-293. https://doi.org/10.1016/j.isprsjprs.2018.11.010

Vásquez, J., Smith, R., Cadena, Á., Rave, C. 2006. Planificación energética local bajo una evaluación integrada energía-ambiente-economía. Caso de aplicación valle de aburra y canasta energética en distribución de energía de Empresa Públicas de Medellín. Energética, 36, 25–33.

Wang, C., Li, L. 2020. Multi-scale residual deep network for semantic segmentation of buildings with regularizer of shape representation. Remote Sensing, 12(18), 2932. https://doi.org/10.3390/rs12182932

Yang, H.L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., Bhaduri, B. 2018. Building Extraction at Scale Using Convolutional Neural Network: Mapping of the United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2600–2614. https://doi.org/10.1109/JSTARS.2018.2835377

Zha, Y., Gao, J., Ni, S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987

Zhang, L., Wu, J., Fan, Y., Gao, H., Shao, Y. 2020. An efficient building extraction method from high spatial resolution remote sensing images based on improved mask R-CNN. Sensors (Switzerland), 20(5), 1–13. https://doi.org/10.3390/s20051465

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J. 2017. Pyramid scene parsing network. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. Honolulu, USA, 21-26 Julio. pp 6230-6239. https://doi.org/10.1109/CVPR.2017.660

Published

2021-07-21

Issue

Section

Research articles