Evaluation of segmentation parameters in OBIA for classification of land covers from UAV images





Kappa index, mean-shift segmentation algorithm, object-based image analysis, Random Forest, Unmanned Aerial Vehicles


Unmanned Aerial Vehicles (UAVs) have given a new boost to remote sensing and image classification techniques due to the high level of detail among other factors. Object-based image analysis (OBIA) could improve classification accuracy unlike to pixel-based, especially in high-resolution images. OBIA application for image classification consists of three stages i.e., segmentation, class definition and training polygons, and classification. However, defining the parameters: spatial radius (SR), range radius (RR) and minimum region size (MR) is necessary during the segmentation stage. Despite their relevance, they are usually visually adjusted, which leads to a subjective interpretation. Therefore, it is of utmost importance to generate knowledge focused on evaluating combinations of these parameters. This study describes the use of the mean-shift segmentation algorithm followed by Random Forest classifier using Orfeo Toolbox software. It was considered a multispectral orthomosaic derived from UAV to generate a suburban map land cover in town of El Pueblito, Durango, Mexico. The main aim was to evaluate efficiency and segmentation quality of nine parameter combinations previously reported in scientific studies.This in terms of number generated polygons, processing time, discrepancy measures for segmentation and classification accuracy metrics. Results evidenced the importance of calibrating the input parameters in the segmentation algorithms. Best combination was RE=5, RR=7 and TMR=250, with a Kappa index of 0.90 and shortest processing time. On the other hand, RR showed a strong and inversely proportional degree of association regarding the classification accuracy metrics.


Download data is not yet available.

Author Biographies

Susana I. Hinojosa-Espinoza, Universidad Juárez del Estado de Durango (UJED)

Facultad de Ciencias Forestales

José L. Gallardo-Salazar, Universidad Juárez del Estado de Durango (UJED)

Facultad de Ciencias Forestales

Félix J. C. Hinojosa-Espinoza, Universidad Juárez del Estado de Durango (UJED)

Facultad de Ciencias Forestales

Anulfo Meléndez-Soto, Universidad Juárez del Estado de Durango (UJED)

Facultad de Ciencias Forestales


Abburu, S., Golla, S.B. 2015. Satellite image classification methods and techniques: A review. International Journal of Computer Applications, 119(8), 20-25. https://doi.org/10.5120/21088-3779

Adelabu, S., Mutanga, O., Adam, E. 2015. Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods. Geocarto International, 30(7), 810-821. https://doi.org/10.1080/10106049.2014.997303

Al-Najjar, H.A.H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A.A., Ueda, N., Mansor, S. 2019. Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sensing, 11(12), 1461. https://doi.org/10.3390/rs11121461

Apriyanto, D., Jaya, I.N., Puspaningsih, N. 2019. Examining the object-based and pixel-based image analyses for developing stand volume estimator model. Indonesian Journal of Electrical Engineering and Computer Science, 15(3), 1586-1596. https://doi.org/10.11591/ijeecs.v15.i3.pp1586-1596

Ballari, D., Orellana, D., Acosta, E., Espinoza, A., Morocho, V. 2016. UAV monitoring for environmental management in Galapagos Islands. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 1105-1111. https://doi.org/10.5194/isprsarchives- XLI-B1-1105-2016

Belgiu, M., Drǎguţ, L., Strobl, J. 2014. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 205-215. https://doi.org/10.1016/j.isprsjprs.2013.11.007

Benarchid, O., Raissouni, N. 2014. Mean-shift Segmentation Parameters Estimator (MSPE): A new tool for Very High Spatial Resolution satellite images. International Conference on Multimedia Computing and Systems -Proceedings, 357-361. https://doi.org/10.1109/ICMCS.2014.6911184

Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

Brooke, C., Clutterbuck, B. 2020. Mapping Heterogeneous Buried Archaeological Features Using Multisensor Data from Unmanned Aerial Vehicles. Remote Sensing, 12(1), 41. https://doi.org/10.3390/rs12010041

Burdziakowski, P. 2017. Evaluation of Open Drone Map Toolkit for Geodetic Grade Aerial Drone Mapping– Case Study. En: Proceedings International Multidisciplinary Scientific GeoConference-SGEM 2017, Gdańska, Polonia. 29 Junio-5 Julio. pp. 101-110. https://doi.org/10.5593/sgem2017/23/S10.013

Carvajal-Ramírez, F., Marques da Silva, J.R., Agüera- Vega, F., Martínez-Carricondo, P., Serrano, J., Moral, F.J. 2019. Evaluation of Fire Severity Indices Based on Pre- and Post-Fire Multispectral Imagery Sensed from UAV. Remote Sensing, 11(9), 993. https://doi.org/10.3390/rs11090993

Chuvieco, E. 2020. Revisión histórica y perspectivas de futuro de la Teledetección: desde el ERTS hasta los Sentinels. Mapping, 29(200), 30-32.

Colomina, I., Molina, P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92(2014), 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

Comert, R., Avdan, U., Gorum, T., Nefeslioglu, H.A. 2019. Mapping of shallow landslides with object- based image analysis from unmanned aerial vehicle data. Engineering Geology, 260(2019), 105264. https://doi.org/10.1016/j.enggeo.2019.105264

Congalton, R.G., Mead, R.A. 1983. A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering and Remote Sensing, 49(1), 69-74.

Congalton, R.G., Green, K. 2009. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Second CRC Press Taylor & Francis Group: Boca Raton, FL, USA, Volume 48. https://doi.org/10.1201/9781420055139

Cutler, D.R., Edwards Jr, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J. 2007. Random forests for classification in ecology. Ecology, 88(11), 2783-2792. https://doi.org/10.1890/07-0539.1

Dash, J.P., Pearse, G.D., Watt, M.S. 2018. UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health. Remote Sensing, 10(8), 1216. https://doi.org/10.3390/rs10081216

Dash, J.P., Watt, M.S., Pearse, G.D., Heaphy, M., Dungey, H.S. 2017. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131(2017), 1-14. https://doi.org/10.1016/j.isprsjprs.2017.07.007

De Castro, A.I., Torres-Sánchez, J., Peña, J.M., Jiménez- Brenes, F.M., Csillik, O., López-Granados, F. 2018. An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sensing, 10(2), 285. https://doi.org/10.3390/rs10020285

De Luca, G., N. Silva, J.M., Cerasoli, S., Araújo, J., Campos, J., Di Fazio, S., Modica, G. 2019. Object-Based Land Cover Classification of Cork Oak Woodlands using UAV Imagery and Orfeo ToolBox. Remote Sensing, 11(10), 1238. https://doi.org/10.3390/rs11101238

Dhingra, S., Kumar, D. 2019. A review of remotely sensed satellite image classification. International Journal of Electrical & Computer Engineering, 9(3), 1720-1731. https://doi.org/10.11591/ijece.v9i3.pp1720-1731

Dongping M., Tianyu C., Hongyue., Longxiang L., Cheng Q., Jinyang D., 2012. Semivariogram-Based Spatial Bandwidth Selection for Remote Sensing Image Segmentation With Mean-Shift Algorithm. IEEE Geoscience and Remote Sensing Letters, 9(5), 813–817. https://doi.org/10.1109/lgrs.2011.2182604

Enderle, D.I.M., Weih Jr, R.C. 2005. Integrating supervised and unsupervised classification methods to develop a more accurate land cover classification. Journal of the Arkansas Academy of Science, 59(1), 65-73.

Farfaglia, S., Lollino, G., Iaquinta, M., Sale, I., Catella, P., Martino, M., Chiesa, S. 2015. The use of UAV to monitor and manage the territory: perspectives from the SMAT project. En Engineering Geology for Society and Territory- Volume 5 (pp. 691-695). Springer, Cham. https://doi.org/10.1007/978-3-319-09048-1_134

Feng, Q., Liu, J., Gong, J. 2015. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sensing, 7(1), 1074-1094. https://doi.org/10.3390/rs70101074

Gallardo-Salazar, J., Pompa-García, M., Aguirre- Salado, C., López-Serrano, P., Meléndez-Soto, A. 2020. Drones: tecnología con futuro promisorio en la gestión forestal. Revista Mexicana de Ciencias Forestales, 11(61), 28-50. https://doi.org/10.29298/ rmcf.v11i61.794

Gao, J., Liao, W., Nuyttens, D., Lootens, P., Vangeyte, J., Pižurica, A., He, Y., Pieters, J.G. 2018. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 67(2018), 43-53. https://doi. org/10.1016/j.jag.2017.12.012

Geneletti, D., Gorte, B.G.H. 2003. A method for object- oriented land cover classification combining Landsat TM data and aerial photographs. International Journal of Remote Sensing, 24(6), 1273-1286. https://doi.org/10.1080/01431160210144499

Hasmadi, M., Pakhriazad, H.Z., Shahrin, M.F. 2009. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia: Malaysian Journal of Society and Space, 5(1), 1-10.

Hossain, M.D., Chen, D. 2019. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150(2019), 115-134. https://doi. org/10.1016/j.isprsjprs.2019.02.009

Immitzer, M., Vuolo, F., Atzberger, C. 2016. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/ rs8030166

Inzunza-López, J.O., López-Ariza, B., Valdez-Cepeda, R.D., Mendoza, B., Sánchez-Cohen, I., García- Herrera, G. 2011. La variación de las temperaturas extremas en la ‘Comarca Lagunera’ y cercanías. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(2011), 45-61. https://doi.org/10.5154/r. rchscfa.2010.09.071

Jain, M., Tomar, P.S. 2013. Review of image classification methods and techniques. International Journal of Engineering Research and Technology, 2(8), 852-858.

Jara, C., Delegido, J., Ayala, J., Lozano, P., Armas, A., Flores, V. 2019. Estudio de bofedales en los Andes ecuatorianos a través de la comparación de imágenes Landsat-8 y Sentinel-2. Revista de Teledetección, 53(2019), 45-57. https://doi.org/10.4995/ raet.2019.11715

Kakooei, M., Baleghi, Y. 2017. Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment. International Journal of Remote Sensing, 38(8-10), 2511-2534. https://doi.org/10.1080/01431161.2017.1294780

Khatami, R., Mountrakis, G., Stehman, S.V. 2016. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177(2016), 89-100. https://doi.org/10.1016/j.rse.2016.02.028

Langhammer, J., Vacková, T. 2018. Detection and Mapping of the Geomorphic Effects of Flooding Using UAV Photogrammetry. Pure and Applied Geophysics, 175(9), 3223-3245. https://doi.org/10.1007/s00024-018-1874-1

Li, M., Ma, L., Blaschke, T., Cheng, L., Tiede, D. 2016. A systematic comparison of different object- based classification techniques using high spatial resolution imagery in agricultural environments. International Journal of Applied Earth Observation and Geoinformation, 49(2016), 87-98. https://doi. org/10.1016/j.jag.2016.01.011

Li, M., Zang, S., Zhang, B., Li, S., Wu, C. 2014. AReview of Remote Sensing Image Classification Techniques: the Role of Spatio-contextual Information. European Journal of Remote Sensing, 47(1), 389-411. https:// doi.org/10.5721/EuJRS20144723

Li, S., Tang, H., Huang, X., Mao, T., Niu, X. 2017. Automated Detection of Buildings from Heterogeneous VHR Satellite Images for Rapid Response to Natural Disasters. Remote Sensing, 9(11), 1177. https://doi.org/10.3390/rs9111177

Liu, Y., Biana, L., Menga, Y., Wanga, H., Zhanga, S., Yanga, Y., Shaoa, X., Wang, B., 2012. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 68(2012), 144-156. https://doi.org/10.1016/j.isprsjprs.2012.01.007

Lu, D., Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. https://doi.org/10.1080/01431160600746456

Lyons, M.B., Keith, D.A., Phinn, S.R., Mason, T.J., Elith, J. 2018. A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208(2018), 145-153. https://doi.org/10.1016/j. rse.2018.02.026

Ma, L., Cheng, L., Li, M., Liu, Y., Ma, X. 2015. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 102(2015), 14-27. https://doi.org/10.1016/j. isprsjprs.2014.12.026

Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y. 2017. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130(2017), 277-293. https://doi.org/10.1016/j.isprsjprs.2017.06.001

Mafanya, M., Tsele, P., Botai, J., Manyama, P., Swart, B., Monate, T. 2017. Evaluating pixel and object based image classification techniques for mapping plant invasions from UAV derived aerial imagery: Harrisia pomanensis as a case study. ISPRS Journal of Photogrammetry and Remote Sensing, 129(2017), 1-11. https://doi.org/10.1016/j.isprsjprs.2017.04.009

Mangiameli, M., Mussumeci, G., Candiano, A. 2018. A low cost methodology for multispectral image classification. En Computational Science and Its Applications-ICCSA 2018 (pp. 263–280). Springer, Cham. https://doi.org/10.1007/978-3-319-95174- 4_22

Matese, A., Toscano, P., Di Gennaro, S.F., Genesio, L., Vaccari, F.P., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R., Gioli, B. 2015. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sensing, 7(3), 2971-2990. https://doi.org/10.3390/ rs70302971

Michel, J., Youssefi, D., Grizonnet, M. 2015. Stable Mean-Shift Algorithm and Its Application to the Segmentation of Arbitrarily Large Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 952-964. https://doi. org/10.1109/TGRS.2014.2330857

Monserud, R.A., Leemans, R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275-293. https://doi.org/10.1016/0304-3800(92)90003-W

Nenmaoui, A., Torres, M.Á.A., Novelli, A., Marín, M.C.V., Torres, F.J.A., Betlej, M., Cichón, P. 2017. Mapeado de invernaderos mediante teledetección orientada a objetos: relación entre la calidad de la segmentación y precisión de la clasificación. Revista Mapping, 26(181), 4-13. ISSN: 1131-9100

Raissouni, N., Benarchid, O., Sobrino, J., Ayyan, A. 2015. Aplicación del Estimador de Parámetros de Segmentación por Media-desplazada (EPSM) a las imágenes de satélite de muy alta resolución espacial: Tetuán (Marruecos). Revista de Teledetección, 43(2015), 91-96. https://doi.org/10.4995/ raet.2015.3511

Ramadhan Kete, S.C., Suprihatin, Tarigan, S.D., Effendi, H. 2019. Land use classification based on object and pixel using Landsat 8 OLI in Kendari City, Southeast Sulawesi Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 284(2019), 012019. https://doi.org/10.1088/1755-1315/284/1/012019

Rosenfield, G.H., Fitzpatrick-Lins, K. 1986. A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52(2), 223-227.

Sideris, K., Colson, D., Lightfoot, P., Heeley, L., Robinson, P. 2020. Review of image segmentation algorithms for analysing Sentinel-2 data over large geographical areas. JNCC Report No. 655. Peterborough, ISSN 0963-8091.

Silalahi, R., Jaya, I.N., Tiryana, T., Mulia, F. 2018. Assessing the Crown Closure of Nypa on UAV Images using Mean-Shift Segmentation Algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 9(3), 722-730. https://doi.org/10.11591/ijeecs.v9.i3.pp722-730

Smits, P.C., Dellepiane, S.G., Schowengerdt, R.A. 1999. Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. International Journal of Remote Sensing, 20(8), 1461-1486. https://doi.org/10.1080/014311699212560

Teodoro, A.C., Araujo, R. 2014. Exploration of the OBIA methods available in SPRING non- commercial software to UAV data processing. En: Proceedings SPIE 9245, Earth Resources and Environmental Remote Sensing/GIS Applications. https://doi.org/10.1117/12.2066468

V. Amsterdam, Netherlands, 10 de Octubre. https://doi.org/10.1117/12.2066468

Teodoro, A.C., Araujo, R. 2016. Comparison of performance of object-based image analysis techniques available in open source software (Spring and Orfeo Toolbox/Monteverdi) considering very high spatial resolution data. Journal of Applied Remote Sensing, 10(1), 1-22. https://doi.org/10.1117/1.JRS.10.016011

Torres-Sánchez, J., López-Granados, F., Peña, J.M. 2015. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 114(2015), 43-52. https://doi.org/10.1016/j.compag.2015.03.019

Trisasongko, B.H., Panuju, D.R., Paull, D.J., Jia, X., Griffin, A.L. 2017. Comparing six pixel-wise classifiers for tropical rural land cover mapping using four forms of fully polarimetric SAR data. International Journal of Remote Sensing, 38(11), 3274-3293. https://doi.org/10.1080/01431161.2017.1292072

Villanueva Díaz, J., Stahle, D.W., Cerano Paredes, J., Estrada Ávalos, J., Constante García, V. 2013. Respuesta hidrológica del sabino en bosques de galería del Río San Pedro Mezquital, Durango. Revista Mexicana de Ciencias Forestales, 4(20), 9-19. https://doi.org/10.29298/rmcf.v4i20.366

Vu, T.T. 2012. Object-based remote sensing image analysis with OSGeo tools. En: Proceedings FOSS4G Southeast Asia 2012, Johor Bahru, Malaysia. 18-19 Julio. pp. 79-84.

Ye, S., Pontius, R.G., Rakshit, R. 2018. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 141(2018), 137-147. https://doi.org/10.1016/j. isprsjprs.2018.04.002

Zaraza-Aguilera, M.A., Manrique-Chacón, L.M. 2019. Generación de datos de cambio de coberturas vegetales en la sabana de Bogotá mediante el uso de series temporales con imágenes Landsat e imágenes sintéticas MODIS-Landsat entre los años 2007 y 2013. Revista de Teledetección, 54(2019), 41-58.https://doi.org/10.4995/raet.2019.12280





Research articles