Monthly Deforestation Monitoring with Sentinel-1 Multi-temporal Signatures and InSAR Coherences

A. Pulella, F. Sica, P. Rizzoli


Sentinel-1 interferometric time-series allow for the accurate retrieval of the target’s temporal decorrelation and, therefore, the inversion of land cover information and its temporal monitoring. This paper describes the development of an observation scenario for monitoring monthly deforestation over the Amazon rainforest, which relies on the use of radar for overcoming the physical limitations of optical sensors caused by the presence of cloud coverage. Specifically, we implement a classification scheme that exploits multi-temporal SAR features, such as backscatter, spatial textures, and interferometric parameters, to map forested areas. Distinct forest maps are generated for consecutive months and further processed to detect deforestation phenomena and map clear-cuts evolution. The obtained results are validated by selecting cloud-free Sentinel-2 multispectral data on the selected area and acquired during the same observation time.


Forest mapping; deforestation; change detection; Synthetic Aperture Radar; Interferometry; interferometric coherence; temporal decorrelation; Sentinel-1; Sentinel-2

Full Text:



Belgiu, M., Drăguţ, L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, 114, 24-31.

Beucher, S., Meyer, F. 1993. The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing, 34, 433-481.

Bontemps, S., Defourny, P., Bogaert, E. V., Arino, O., Kalogirou, V., Perez, J. R. 2011. GLOBCOVER 2009 Product description and validation report. tech. rep., European Space Agency, Feb. 2011.

Breiman, L. 2001. Random Forests. Machine Learning, 45, 5-32.

Bueso-Bello, J.L., Rizzoli, P., Martone, M., Gonzalez, C. 2018. Potentials of TanDEM-X Forest/Non-forest Map for Change Detection. In International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4213-4216.

Diniz, F.H., Kok, K., Hott, M.C., Hoogstra-Klein, M.A., Arts, B. 2013. From space and from the ground: determining forest dynamics in settlement projects in the Brazilian Amazon. International Forestry Review, 15(4), 442- 455.

Dobson, M.C., Ulaby, F.T., Pierce, L.E. 1995. Land-cover classification and estimation of terrain attributes using synthetic aperture radar. Remote sensing of Environment, 51(1), 199-214.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Labertini, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36.

Dubayah, R.O., Drake, R.O., 2000. Lidar remote sensing for forestry. Journal of Forestry, 98, 44-46.

Ellatifi, M. 2009. Forests in the Biosphere, in J.N. Owens and H.G. Lund, (eds.) Forests And Forest Plants - Volume III, ch. 1, pp. 1–20, Oxford, UK: EOLSS Publishers Co. Ltd.

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X. 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote sensing of Environment, 114(1), 168-182.

Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Suen, H.P., Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F, Liu, Q., Song, L. 2019. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci Bull, 64,(6), 370-373.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Tau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.C. 2013. High-resolution global maps of 21stcentury forest cover change. Science, 342(6160), 850-853.

Kalamandeen, M., Gloor, E., Mitchard, E., Quincey, D., Ziv, G., Spracklen, D., Spracklen, B., Adami, M., Aragão, L., Galbraith, D. 2018. Pervasive rise of small-scale deforestation in Amazonia. Scientific reports, 8(1), 1-10.

Lu, X., Yuan, Y., Zheng, X. 2017. Joint dictionary learning for multispectral change detection. IEEE transactions on cybernetics, 47(4), 884-897.

Lyu, H., Lu, H., Mou, L. 2016. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sensing, 8(6), 506.

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, F. 2017. Sen2Cor for Sentinel-2. In Image and Signal Processing for Remote Sensing XXIII, vol. 10427, pp. 37-48, International Society for Optics and Photonics, SPIE.

Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M.E., García-Santos, G., Fernandes, R., Berger, M. 2012. Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of environment, 120, 91-101.

Malhi,Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A. 2008. Climate Change, Deforestation, and the Fate of the Amazon. Science, 319(5860), 169-172.

Martone, M., Rizzoli, P., Wecklich, C., González, C., Bueso-Bello, J.L., Valdo, P., Schulze, D., Zink, M., Krieger, G., Moreira, A. 2018. The global forest/ non-forest map from TanDEM-X interferometric SAR data. Remote sensing of environment, 205, 352- 373.

Martone, M., Sica, F., González, C., Bueso-Bello, J.L., Valdo, P., Rizzoli, P. 2018. High-resolution forest mapping from tandem-x interferometric data exploiting nonlocal filtering. Remote Sensing, 10(9), 1477.

Mazza, A., Sica, F., Rizzoli, P., Scarpa, G. 2019. TanDEM-X Forest Mapping Using Convolutional Neural Networks. Remote Sensing, 11(24), 2980.

Montibeller, B., Kmoch, A., Virro, H., Mander, Ü., Uuemaa, E. 2020. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Scientific reports, 10(1), 1-13.

Mora, B., Tsendbazar, N.E., Herold, M., Arino, O. 2014. Global land cover mapping: Current status and future trends. In Land Use and Land Cover Mapping in Europe (pp. 11-30). Springer, Dordrecht.

Perigolo, N.A., de Medeiros, M.B., Simon, M.F. 2017. Vegetation types of the upper Madeira River in Rondônia, Brazil. Brittonia, 69(4), 423-446.

Pulella, A., Aragão Santos, R., Sica, F., Posovszky, P., Rizzoli, P. 2020. Multi-temporal sentinel-1 backscatter and coherence for rainforest mapping. Remote Sensing, 12(5), 847.

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., Lucas, R. 2014. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sensing of environment, 155, 13-31.

Shvidenko, A.Z., Schepaschenko, D.G. 2013. Climate change and wildfires in Russia. Contemporary Problems of Ecology, 6, 683-692.

Sica, F., Reale, D., Poggi, G., Verdoliva, L., Fornaro, G. 2015. Nonlocal adaptive multilooking in SAR multipass differential interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), 1727-1742.

Sica, F., Cozzolino, D., Verdoliva, L., Poggi, G. 2018. The offset-compensated nonlocal filtering of interferometric phase. Remote Sensing, 10(9), 1359.

Sica, F., Pulella, A., Nannini, M., Pinheiro, M., Rizzoli, P. 2019. Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 ShortTime-Series. Remote Sensing of Environment, 232, 111277.

Sica, F., Bretzke, S., Pulella, A., Bueso-Bello, J.L., Martone, M., Prats-Iraola, P., GonzálezBonilla, M.J., Schimtt, M., Rizzoli, P. 2020. InSAR Decorrelation at X-Band From the Joint TanDEM-X/PAZ Constellation. IEEE Geoscience and Remote Sensing Letters.

Sica, F., Gobbi, G., Rizzoli, P., Bruzzone, L. 2020. ϕ-Net: Deep Residual Learning for InSAR Parameters Estimation. IEEE Transactions on Geoscience and Remote Sensing. pp. 1-25.

Stone, T.A., Brown, I.F., Woodwell, G.M. 1991. Estimation, by remote sensing, of deforestation in central Rondônia, Brazil. Forest Ecology and Management, 38(3-4), 291-304.

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I.N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R., Pietrapaolo, A., Huchler, M., Rostan, F. 2012. GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9-24.

Unser, M. 1986. Sum and Difference Histograms for Texture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8, 1, 118- 125.

Valeriano, D.M., Mello, E.M., Moreira, J.C., Shimabukuro, Y.E., Duarte, V., Souza, I.M., do Santos, J.R., Barbosa, C.C.F., de Souza, R.C.M. 2004. Monitoring tropical forest from space: the PRODES digital project. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 35, 272-274.

Wen, D., Huang, X., Zhang, L., Benediktsson, J.A. 2016. A novel automatic change detection method for urban high-resolution remotely sensed imagery based on multiindex scene representation. IEEE Transactions on Geoscience and Remote Sensing, 54(1), 609-625.

Wilson, E.H., Sader, S.A. 2002. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953