Monthly Deforestation Monitoring with Sentinel-1 Multi-temporal Signatures and InSAR Coherences

Authors

DOI:

https://doi.org/10.4995/raet.2020.14308

Keywords:

Forest mapping, deforestation, change detection, Synthetic Aperture Radar, Interferometry, interferometric coherence, temporal decorrelation, Sentinel-1, Sentinel-2

Abstract

Sentinel-1 interferometric time-series allow for the accurate retrieval of the target’s temporal decorrelation and, therefore, the inversion of land cover information and its temporal monitoring. This paper describes the development of an observation scenario for monitoring monthly deforestation over the Amazon rainforest, which relies on the use of radar for overcoming the physical limitations of optical sensors caused by the presence of cloud coverage. Speciï¬cally, we implement a classiï¬cation scheme that exploits multi-temporal SAR features, such as backscatter, spatial textures, and interferometric parameters, to map forested areas. Distinct forest maps are generated for consecutive months and further processed to detect deforestation phenomena and map clear-cuts evolution. The obtained results are validated by selecting cloud-free Sentinel-2 multispectral data on the selected area and acquired during the same observation time.

Downloads

Download data is not yet available.

Author Biographies

A. Pulella, German Aerospace Center (DLR)

DLR: Microwaves and Radar Institute, Satellite SAR Systems Department

Position: Research Engineer

Background: MSc in Telecommunications Engineering at University of Pisa

F. Sica, German Aerospace Center (DLR)

DLR: Microwaves and Radar Institute, Satellite SAR Systems Department

P. Rizzoli, German Aerospace Center (DLR)

DLR: Microwaves and Radar Institute, Satellite SAR Systems Department

References

Belgiu, M., Drăguţ, L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and remote sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Beucher, S., Meyer, F. 1993. The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing, 34, 433-481. https://doi.org/10.1201/9781482277234-12

Bontemps, S., Defourny, P., Bogaert, E. V., Arino, O., Kalogirou, V., Perez, J. R. 2011. GLOBCOVER 2009 Product description and validation report. tech. rep., European Space Agency, Feb. 2011.

Breiman, L. 2001. Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324

Bueso-Bello, J.L., Rizzoli, P., Martone, M., Gonzalez, C. 2018. Potentials of TanDEM-X Forest/Non-forest Map for Change Detection. In International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4213-4216. https://doi.org/10.1109/IGARSS.2018.8517867

Diniz, F.H., Kok, K., Hott, M.C., Hoogstra-Klein, M.A., Arts, B. 2013. From space and from the ground: determining forest dynamics in settlement projects in the Brazilian Amazon. International Forestry Review, 15(4), 442- 455. https://doi.org/10.1505/146554813809025658

Dobson, M.C., Ulaby, F.T., Pierce, L.E. 1995. Land-cover classification and estimation of terrain attributes using synthetic aperture radar. Remote sensing of Environment, 51(1), 199-214. https://doi.org/10.1016/0034-4257(94)00075-X

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Labertini, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026

Dubayah, R.O., Drake, R.O., 2000. Lidar remote sensing for forestry. Journal of Forestry, 98, 44-46.

Ellatifi, M. 2009. Forests in the Biosphere, in J.N. Owens and H.G. Lund, (eds.) Forests And Forest Plants - Volume III, ch. 1, pp. 1–20, Oxford, UK: EOLSS Publishers Co. Ltd.

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X. 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote sensing of Environment, 114(1), 168-182. https://doi.org/10.1016/j.rse.2009.08.016

Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Suen, H.P., Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F, Liu, Q., Song, L. 2019. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci Bull, 64,(6), 370-373. https://doi.org/10.1016/j.scib.2019.03.002

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Tau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.C. 2013. High-resolution global maps of 21stcentury forest cover change. Science, 342(6160), 850-853. https://doi.org/10.1126/science.1244693

Kalamandeen, M., Gloor, E., Mitchard, E., Quincey, D., Ziv, G., Spracklen, D., Spracklen, B., Adami, M., Aragão, L., Galbraith, D. 2018. Pervasive rise of small-scale deforestation in Amazonia. Scientific reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-19358-2

Lu, X., Yuan, Y., Zheng, X. 2017. Joint dictionary learning for multispectral change detection. IEEE transactions on cybernetics, 47(4), 884-897. https://doi.org/10.1109/TCYB.2016.2531179

Lyu, H., Lu, H., Mou, L. 2016. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sensing, 8(6), 506. https://doi.org/10.3390/rs8060506

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, F. 2017. Sen2Cor for Sentinel-2. In Image and Signal Processing for Remote Sensing XXIII, vol. 10427, pp. 37-48, International Society for Optics and Photonics, SPIE. https://doi.org/10.1117/12.2278218

Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M.E., García-Santos, G., Fernandes, R., Berger, M. 2012. Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of environment, 120, 91-101. https://doi.org/10.1016/j.rse.2011.09.026

Malhi,Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A. 2008. Climate Change, Deforestation, and the Fate of the Amazon. Science, 319(5860), 169-172.

Martone, M., Rizzoli, P., Wecklich, C., González, C., Bueso-Bello, J.L., Valdo, P., Schulze, D., Zink, M., Krieger, G., Moreira, A. 2018. The global forest/ non-forest map from TanDEM-X interferometric SAR data. Remote sensing of environment, 205, 352- 373. https://doi.org/10.1016/j.rse.2017.12.002

Martone, M., Sica, F., González, C., Bueso-Bello, J.L., Valdo, P., Rizzoli, P. 2018. High-resolution forest mapping from tandem-x interferometric data exploiting nonlocal filtering. Remote Sensing, 10(9), 1477. https://doi.org/10.3390/rs10091477

Mazza, A., Sica, F., Rizzoli, P., Scarpa, G. 2019. TanDEM-X Forest Mapping Using Convolutional Neural Networks. Remote Sensing, 11(24), 2980. https://doi.org/10.3390/rs11242980

Montibeller, B., Kmoch, A., Virro, H., Mander, Ü., Uuemaa, E. 2020. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Scientific reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-62591-x

Mora, B., Tsendbazar, N.E., Herold, M., Arino, O. 2014. Global land cover mapping: Current status and future trends. In Land Use and Land Cover Mapping in Europe (pp. 11-30). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7969-3_2

Perigolo, N.A., de Medeiros, M.B., Simon, M.F. 2017. Vegetation types of the upper Madeira River in Rondônia, Brazil. Brittonia, 69(4), 423-446. https://doi.org/10.1007/s12228-017-9505-1

Pulella, A., Aragão Santos, R., Sica, F., Posovszky, P., Rizzoli, P. 2020. Multi-temporal sentinel-1 backscatter and coherence for rainforest mapping. Remote Sensing, 12(5), 847. https://doi.org/10.3390/rs12050847

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., Lucas, R. 2014. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sensing of environment, 155, 13-31. https://doi.org/10.1016/j.rse.2014.04.014

Shvidenko, A.Z., Schepaschenko, D.G. 2013. Climate change and wildfires in Russia. Contemporary Problems of Ecology, 6, 683-692.

Sica, F., Reale, D., Poggi, G., Verdoliva, L., Fornaro, G. 2015. Nonlocal adaptive multilooking in SAR multipass differential interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), 1727-1742. https://doi.org/10.1109/JSTARS.2015.2421554

Sica, F., Cozzolino, D., Verdoliva, L., Poggi, G. 2018. The offset-compensated nonlocal filtering of interferometric phase. Remote Sensing, 10(9), 1359. https://doi.org/10.3390/rs10091359

Sica, F., Pulella, A., Nannini, M., Pinheiro, M., Rizzoli, P. 2019. Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 ShortTime-Series. Remote Sensing of Environment, 232, 111277. https://doi.org/10.1016/j.rse.2019.111277

Sica, F., Bretzke, S., Pulella, A., Bueso-Bello, J.L., Martone, M., Prats-Iraola, P., GonzálezBonilla, M.J., Schimtt, M., Rizzoli, P. 2020. InSAR Decorrelation at X-Band From the Joint TanDEM-X/PAZ Constellation. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.3014809

Sica, F., Gobbi, G., Rizzoli, P., Bruzzone, L. 2020. ϕ-Net: Deep Residual Learning for InSAR Parameters Estimation. IEEE Transactions on Geoscience and Remote Sensing. pp. 1-25. https://doi.org/10.1109/TGRS.2020.3020427

Stone, T.A., Brown, I.F., Woodwell, G.M. 1991. Estimation, by remote sensing, of deforestation in central Rondônia, Brazil. Forest Ecology and Management, 38(3-4), 291-304. https://doi.org/10.1016/0378-1127(91)90150-T

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I.N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R., Pietrapaolo, A., Huchler, M., Rostan, F. 2012. GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9-24. https://doi.org/10.1016/j.rse.2011.05.028

Unser, M. 1986. Sum and Difference Histograms for Texture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8, 1, 118- 125. https://doi.org/10.1109/TPAMI.1986.4767760

Valeriano, D.M., Mello, E.M., Moreira, J.C., Shimabukuro, Y.E., Duarte, V., Souza, I.M., do Santos, J.R., Barbosa, C.C.F., de Souza, R.C.M. 2004. Monitoring tropical forest from space: the PRODES digital project. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 35, 272-274.

Wen, D., Huang, X., Zhang, L., Benediktsson, J.A. 2016. A novel automatic change detection method for urban high-resolution remotely sensed imagery based on multiindex scene representation. IEEE Transactions on Geoscience and Remote Sensing, 54(1), 609-625. https://doi.org/10.1109/TGRS.2015.2463075

Wilson, E.H., Sader, S.A. 2002. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396. https://doi.org/10.1016/S0034-4257(01)00318-2

Downloads

Published

2020-11-27