Surface water extent dynamics from three periods of continuous Landsat time series; subregional differences across Argentine plains

Authors

  • Vanina S. Aliaga Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas (IADO-CONICET) https://orcid.org/0000-0001-9355-4747
  • María C. Piccolo Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas (IADO-CONICET); Universidad Nacional del Sur (UNS)
  • Gerardo M. E. Perillo Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas (IADO-CONICET); Universidad Nacional del Sur (UNS)

DOI:

https://doi.org/10.4995/raet.2021.14263

Keywords:

Landsat, surface water dynamic, climate variability, Pampean lakes, Argentina

Abstract

The Pampean region in Argentina is an extensive plain characterized by abundant shallow lakes that fulfill many environmental, ecological, and social functions. This study aims to detect the multiannual lake area changes in this region during 2001-2009 using remote sensing, including lakes as small as ≥10,000 m2 or 1 ha. Landsat scenes of the wet (2008-2009), normal (2006), and dry (2008-2009) seasons were obtained, and using remote sensing techniques, the number and area of shallow lakes were calculated. The spatiotemporal variation of shallow lakes was studied in different climate periods in eight singular subregions. Spatial associations between annual precipitation and lake number and area were analyzed through the development of a Geographic Information System (GIS) at a subregional scale. During the study period the total lake area in the Pampean region decreased by 5257.39 km2 (62"‰%), but each subregion showed different responses to climatic events. In seven of them, the differences between climate periods prove to be statistically significant (P>0.01). The relationship between precipitation and lake number and area revealed the domain of positive association. We conclude that climate factors play a dominant role in lake changes across the Pampean plains. However, other factors such as origin, topographic and edaphic characteristics intensify or mitigate changes in surface hydrology.

Downloads

Download data is not yet available.

Author Biographies

María C. Piccolo, Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas (IADO-CONICET); Universidad Nacional del Sur (UNS)

Departamento de Geografía

Gerardo M. E. Perillo, Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas (IADO-CONICET); Universidad Nacional del Sur (UNS)

Departamento de Geología

References

Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37(S1), 1237-1247. https://doi.org/10.1002/joc.5079

Aliaga, V.S., Ferrelli, F., Alberdi-Algarañaz, E.D., Bohn, V.Y. Piccolo, M.C. 2016. Distribution and variability of precipitation in the Pampean Region, Argentina. Cuadernos de Investigación Geográfica, 42(1), 261-280. https://doi.org/10.18172/cig.2867

Brendel, A.S. 2020. Estudio integral de los recursos hídricos y las coberturas del suelo de la cuenca media y baja del Río Sauce Grande (Argentina). (Tesis de Doctor en Geografía). Universidad Nacional del Sur, Bahía Blanca, Argentina. https://doi.org/10.19137/ huellas-2020-2425

Bohn, V.Y., Delgado, A.L., Piccolo, M.C. Perillo, G.M. 2016. Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina. Environmental Earth Sciences, 75(9), 818. https://doi.org/10.1007/s12665-016-5569-6

Canziani, G., Castets, F., Maestri, M.L., Ferrati, R. 2019. Uso de imágenes satelitales para el estudio de las lagunas pampeanas. El caso de La Barrancosa. Destino: La Barrancosa. Una invitación a conocer lagunas pampeanas, 77.

Carmona, F., Rivas, R., Thomas, L. Marino, B. 2011. Spectral characterization of the estuary of the Quequén Grande River through Landsat images. In Raúl Rivas, Facundo Carmona and Dora Ocampo (Eds). Teledetección: Recientes aplicaciones en la Región Pampeana. Tandil, Buenos Aires. 11-29.

Deng, X., Xu, Y., Han, L., Song, S., Xu, G., & Xiang, J. 2018. Spatial-temporal changes in the longitudinal functional connectivity of river systems in the Taihu Plain, China. Journal of Hydrology, 566, 846-859. https://doi.org/10.1016/j.jhydrol.2018.09.060

Gerten D., Adrian R. 2000. Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol. Oceanogr., 45, 1058–1066. https://doi.org/10.4319/lo.2000.45.5.1058

Gerten D., Adrian R. 2001. Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol. Oceanogr., 46, 448–455. https://doi.org/10.4319/lo.2001.46.2.0448

Geraldi, A., Piccolo, M.C. Perillo, G.M.E. 2011. The role of the Buenos Aires shallow lakes in the Pampean land scape. Ciencia Hoy, 22.

Hein, C.L., Öhlund, G., Englund, G. 2012. Future distribution of Arctic char Salvelinus alpinus in Sweden under climate change: effects of temperature, lake size and species interactions. Ambio, 41(3), 303- 312. https://doi.org/10.1007/s13280-012-0308-z

Hu, Z.J., Wang, L.L., Tang, H.W., Qi, X.M. 2017. Prediction of the future flood severity in plain river network region based on numerical model: A case study. Journal of Hydrodynamics, 29(4), 586-595. https://doi.org/10.1016/S1001-6058(16)60771-0

Instituto Geográfico Nacional de la República Argentina. 2013. http://www.ign.gob.ar Jones, B.M., Grosse, G.D.A.C., Arp, C.D.,

Jones, M.C., Anthony, K.W., Romanovsky, V.E. 2011. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences, 116(G2). https://doi.org/10.1029/2011JG001666

Karlsson, J.M., Lyon, S.W., Destouni, G. 2014. Temporal behavior of lake size-distribution in a thawing permafrost landscape in northwestern Siberia. Remote sensing, 6(1), 621-636. https://doi.org/10.3390/rs6010621

Kling, G.W., Kipphut, G.W., Miller, M.M., O’Brien, W.J. 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology, 43(3), 477–497. https://doi.org/10.1046/j.1365-2427.2000.00515.x

Kumar, S., Sarkar, A., Thakur, S.K., Shekhar, S. 2017. Hydrogeological characterization of aquifer in palla flood plain of Delhi using integrated approach. Journal of the Geological Society of India, 90(4), 459- 466. https://doi.org/10.1007/s12594-017-0739-z

Maestri, M.L., Castets, F., Bayala, M.I., Canziani, G. 2019. Análisis comparativo de cinco métodos de procesamiento para calcular el área de lagunas pampeanas a partir de imágenes satelitales Landsat. Biología Acuática, (33), 3. https://doi. org/10.24215/16684869e003

McDonald, C.P., Rover, J.A., Stets, E.G., Striegl, R.G. 2012. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnology and Oceanography, 57(2), 597–606. https://doi.org/10.4319/lo.2012.57.2.0597

Mohsen, A., Elshemy, M., Zeidan, B.A. 2018. Change detection for Lake Burullus, Egypt using remote sensing and GIS approaches. Environmental Science and Pollution Research, 25(31), 30763-30771. https://doi.org/10.1007/s11356-016-8167-y

Olthof, I., Fraser, R.H., Schmitt, C. 2015. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sensing of Environment, 168, 194-204. https://doi.org/10.1016/j.rse.2015.07.001

Pisano, M.F., D’Amico, G., Ramos, N., Pommarés, N., Fucks, E. 2020. Factors that control the seasonal dynamics of the shallow lakes in the Pampean region, Buenos Aires, Argentina. Journal of South American Earth Sciences, 98, 102468. https://doi.org/10.1016/j.jsames.2019.102468

Pricope, N. G. 2013. Variable-source flood pulsing in a semi-arid transboundary watershed: The Chobe River, Botswana and Namibia. Environmental Monitoring and Assessment, 185, 1883–1906. https://doi.org/10.1007/s10661-012-2675-0

Quirós, R., Rennella, A.M., Boveri, M.A., Rosso, J.J., Sosnovsky, A. 2002. Factors that affect the structure and functioning of the Pampean shallow lakes. Ecología austral, 12(2), 175-185.

Roach, J.K., Griffith, B., Verbyla, D. 2013. Landscape influences on climate-related lake shrinkage at high latitudes. Global change biology, 19(7), 2276-2284. https://doi.org/10.1111/gcb.12196

Rover, J., Ji, L., Wylie, B.K., Tieszen, L.L. 2012. Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data. Remote Sensing Letters, 3(7), 595-604. https://doi.org/10.1080/01431161.2011.643507

Schroeder, T., Cohen, W., Song, C., Canty, M.J. Yang, Z. 2006. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sensing of Environment. 103(1),16-26. https://doi.org/10.1016/j.rse.2006.03.008

Solana, M.X., Londoño, O.M.Q., Romanelli, A., Donna, F., Martínez, D.E., Weinzettel, P. 2021. Connectivity of temperate shallow lakes to groundwater in the Pampean Plain, Argentina: A remote sensing and multi-tracer approach. Groundwater for Sustainable Development, 13, 100556. https://doi.org/10.1016/j.gsd.2021.100556

Subsecretaria de Recursos Hídricos e Instituto Nacional del Agua. 2002. Atlas digital de los Recursos Hídricos de la República Argentina. Subsecretaría de Recursos Hídricos de la Nación. Buenos Aires, Argentina.

Tulbure, M.G., Broich, M., Stehman, S.K., Kommareddy, A. 2016. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at sub continental scale in a semiarid region. Remote Sensing of Environment, 178, 142-157. https://doi.org/10.1016/j.rse.2016.02.034

Tricart, J.L. 1973. Geomorfología de la Pampa Deprimida. INTA, Buenos Aires.

Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396-6402. https://doi. org/10.1002/2014GL060641

Vincent, W.F., Laurion, I., Pienitz, R., Walter Anthony, K.M. 2013. Climate impacts on Arctic lake ecosystems. Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, 27-42. https://doi.org/10.1002/9781118470596.ch2

Winslow, L.A., Read, J.S., Hanson, P.C., Stanley, E.H. 2015. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes. Inland Waters, 5(1), 7-14. https://doi.org/10.5268/IW-5.1.740

Zhang, G., Yao, T., Xie, H., Zhang, K., Zhu, F. 2014. Lakes state and abundance across the Tibetan Plateau. Chinese Science Bulletin, 59(24), 3010- 3021. https://doi.org/10.1007/s11434-014-0258-x

Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Yi, S. 2017. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophysical Research Letters, 44(1), 252-260. https://doi:10.1002/2016GL072033

Zhang, G., Yao, T., Chen, W., Zheng, G., Shum, C.K., Yang, K., O'Reilly, C.M. 2019. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes. Remote sensing of environment, 221, 386-404. https://doi.org/10.1016/j.rse.2018.11.038

Zunino, J., Ferrelli, F., Píccolo, M.C. 2019. Cambios morfometricos en una Laguna Pampeana (Argentina) como consecuencia de la variabilidad pluviométrica (1960-2015) y sus posibles efectos sobre la comunidad ictica. Geociências (São Paulo), 37(4), 835-847. https://doi.org/10.5016/geociencias.v37i4.11980

Downloads

Published

2021-07-21

Issue

Section

Practical cases