Monitoring the whiting phenomenon in Lake La Cruz (Cuenca, Spain)

M. Ruiz, S. Morales, J.M. Soria

Abstract

In the present study, a five-year follow-up was performed by remote sensing of the calcium carbonate precipitation in La Gitana karstic lake also known as La Cruz (located on the province of Cuenca, Spain). The important role that calcium carbonate precipitation plays in the ecology of the lake is well known for its influence on the vertical migrations of phytoplankton, the concentration of bioavailable phosphorus and, therefore, the eutrophication and quality of the waters. Whiting take place between the months of July and August, and it can be studied at this time through its optical properties, with the main objective of offering updated data on a phenomenon traditionally studied and establishing possible relationships between abiotic factors such as temperature and/or rainfall. The atmospheric temperature data collected by the meteorological station suggest a possible relationship between the appearance of the white phenomenon and a pulse of previous maximum temperatures. On the other hand, no apparent relationship was found between rainfall and water whiting.


Keywords

calcium carbonate; karst; precipitation; remote sensing; whiting

Full Text:

PDF

References

Barton, L.L., Northup, D.E. 2011. Microbes at work in nature: biomineralization and microbial weathering. Microbial Ecology, 299-326. https://doi.org/10.1002/9781118015841.ch11

Buchanan, J.M., Stubblebine, W.C. 1962. Externality. Economica, 29(116), 138-154. https://doi.org/10.1057/9780230523210_7

Camacho, A., Borja, C., Valero-Garcés, B., Sahuquillo, M., Cirujano, S., Soria, J.M., Rico, E., De La Hera, A., Santamans, A.C., García De Domingo, A., Chicote, A., Gosálvez, R. 2009. 3140 Aguas oligomesotróficas calcáreas con vegetación de Chara spp. En: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. 47 p.

Consejería de Medio Ambiente y Desarrollo Rural, 2007. Plan de Ordenación de los Recursos Naturales de las Lagunas de Cañada del Hoyo. D. O. C. M. Núm. 63

Casamayor, E.O., Llirós, M., Picazo, A., Barberán, A., Borrego, C.M., Camacho, A. 2012. Contribution of deep dark fixation processes to overall CO2 incorporation and large vertical changes of microbial populations in stratified karstic lakes. Aquatic Sciences, 74(1), 61-75. https://doi.org/10.1007/s00027-011-0196-5

Cirujano, S., García Murillo, P., Meco Molina, A. 2007. Los carófitos ibéricos. Anales del Jardín Botánico de Madrid, 64(1), 87-102. https://doi.org/10.3989/ajbm.2007.v64.i1.57

Dobolyi, E., Herodek, S. 1980. On the mechanism reducing the phosphate concentration in the water of Lake Balaton. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 65(3), 339-343. https://doi.org/10.1002/iroh.19800650303

Galat, D.L., Jacobsen, R.L. 1985. Recurrent aragonite precipitation in saline-alkaline Pyramid Lake, Nevada. Archiv für Hydrobiologie, 105(2), 137-159.

Gleick, P.H. 1993. Water and conflict: Fresh water resources and international security. International security, 18(1), 79-112. https://doi.org/10.2307/2539033

Hamilton, S.K., Bruesewitz, D.A., Horst, G.P., Weed, D.B., Sarnelle, O. 2009. Biogenic calcite–phosphorus precipitation as a negative feedback to lake eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 66(2), 343-350. https://doi.org/10.1139/F09-003

Hammes, F., Verstraete, W. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in environmental science and biotechnology, 1(1), 3-7. https://doi.org/10.1023/A:1015135629155

Homa, E.S., Chapra, S.C. 2011. Modeling the impacts of calcite precipitation on the epilimnion of an ultraoligotrophic, hard-water lake. Ecological modelling, 222(1), 76-90. https://doi.org/10.1016/j.ecolmodel.2010.09.011

Izhitskiy, A.S., Zavialov, P.O., Sapozhnikov, P.V., Kirillin, G.B., Grossart, H.P., Kalinina, O.Y., Zalota, A.K., Goncharenko, I.V., Kurbaniyazov, A.K. 2016. Present state of the Aral Sea: diverging physical and biological characteristics of the residual basins. Scientific reports, 6(1), 1-9. https://doi.org/10.1038/srep23906

Kleiner, J. 1988. Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Research, 22(10), 1259-1265. https://doi.org/10.1016/0043-1354(88)90113-3

Koschel, R., Benndorf, J., Proft, G., Recknagel, F. 1987. Model-assisted evaluation of alternative hypotheses to explain the self-protection mechanism of lakes due to calcite precipitation. Ecological Modelling, 39(1-2), 59-65. https://doi.org/10.1016/0304-3800(87)90013-5

Miracle, M.R., Vicente, E., Pedrós-Alió, C. 1992. Biological studies of Spanish meromictic and stratified karstic lakes. Limnetica, 8, 59-77.

Müller, B., Meyer, J.S., Gächter, R. 2016. Alkalinity regulation in calcium carbonate-buffered lakes. Limnology and Oceanography, 61(1), 341-352. https://doi.org/10.1002/lno.10213

Mullins, H.T. 1998. Environmental change controls of lacustrine carbonate, Cayuga Lake, New York. Geology, 26(5), 443-446. https://doi.org/10.1130/0091-7613(1998)026%3C0443:ECCOLC%3E2.3.CO;2

Reddy, M.M. 1995. Carbonate precipitation in Pyramid Lake, Nevada. In Mineral Scale Formation and Inhibition. Boston: Springer. https://doi.org/10.1007/978-1-4899-1400-2_3

Reynolds Jr, R.C. 1978. Polyphenol inhibition of calcite precipitation in Lake Powell 1. Limnology and Oceanography, 23(4), 585-597. https://doi.org/10.4319/lo.1978.23.4.0585

Robertson, D.M., Garn, H.S., Rose, W.J. 2007. Response of calcareous Nagawicka Lake, Wisconsin, to changes in phosphorus loading. Lake and Reservoir Management, 23(3), 298-312. https://doi.org/10.1080/07438140709354018

Rodrigo, M.A., Vicente, E., Miracle, M.R. 1993. Shortterm calcite precipitation in the karstic meromictic Lake La Cruz (Cuenca, Spain). Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 25(2), 711-719. https://doi.org/10.1080/03680770.1992.11900231

Seifan, M., Berenjian, A. 2019. Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied microbiology and biotechnology, 103(12), 4693-4708. https://doi.org/10.1007/s00253-019-09861-5

Stabel, H.H. 1986. Calcite precipitation in Lake Constance: Chemical equilibrium, sedimentation, and nucleation by algae 1. Limnology and Oceanography, 31(5), 1081-1094. https://doi.org/10.4319/lo.1986.31.5.1081

Strong, A.E., Eadie, B.J. 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes 1. Limnology and Oceanography, 23(5), 877-887. https://doi.org/10.4319/lo.1978.23.5.0877

Vanderploeg, H.A., Eadie, B.J., Liebig, J.R., Tarapchak, S.J., Glover, R.M. 1987. Contribution of calcite to the particle-size spectrum of Lake Michigan seston and its interactions with the plankton. Canadian Journal of Fisheries and Aquatic Sciences, 44(11), 1898-1914. https://doi.org/10.1139/f87-234

Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396-6402. https://doi.org/10.1002/2014GL060641

Wiik, E., Bennion, H., Sayer, C.D., Willby, N.J. 2014. Chemical and biological responses of marl lakes to eutrophication. Freshwater Reviews, 6(2), 35-62. https://doi.org/10.1608/FRJ-6.2.630

Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O’Reilly, C.M., Sharma, S. 2020. Global lake responses to climate change. Nature Reviews Earth & Environment, 1-16. https://doi.org/10.1038/s43017-020-0067-5

Wunder, S. 2015. Revisiting the concept of payments for environmental services. Ecological economics, 117, 234-243. https://doi.org/10.1016/j.ecolecon.2014.08.016

Abstract Views

468
Metrics Loading ...

Metrics powered by PLOS ALM




 

This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet