Obtaining agricultural land cover in Sentinel-2 satellite images with drone image injection using Random Forest in Google Earth Engine
DOI:
https://doi.org/10.4995/raet.2020.14102Keywords:
Sentinel-2, RPAS, Google Earth Engine, supervised classification, Random ForestAbstract
To obtain accurate information on land cover changes in the agricultural sector, we propose a supervised classification method that integrates Sentinel-2 satellite imagery with images surveyed from Remote Piloted Aircraft Systems (RPAS). The methodology was implemented on the Google Earth Engine platform. Initially, the Sentinel-2 imagery collection was integrated into a single image through a median reduction process. Subsequently, the high-pass filter (HPF) pansharpening image fusion method was applied to the thermal spectral bands to obtain a final spatial resolution of 10 m. To perform the integration of the two image sources, the RPAS image was normalized by using a 5X5 gaussian texture filter and the pixel was resampled to five times its original size. This procedure was performed iteratively until reaching the spatial resolution of the Sentinel-2 imagery. Besides, the following inputs were added to the classification: the spectral indices calculated from the Sentinel-2 and RPAS bands (e.g. NDVI, NDWI, SIPI, GARI); altimetric information and slopes of the zone derived from the SRTM DEM. The supervised classification was done by using the Random Forest technique (Machine Learning). The land cover seed reference to perform the classification was manually captured by a thematic expert, then, this reference was distributed in 70% for the training of the Random Forest algorithm and in 30% to validate the classification. The results show that the incorporation of the RPAS image improves thematic accuracy indicators by an average of 3% compared to a classification made exclusively with Sentinel-2 imagery.
Downloads
References
Belgiu, M., Csillik, O., 2017. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204(2018), 509–523. 9-523. https://doi.org/10.1016/j.rse.2017.10.005
Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., Fereres, E., 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. Ieee Transactions on Geoscience and Remote Sensing, 47(3), 722–738. 9-523. https://doi.org/10.1016/j.rse.2017.10.005
Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., Ma, J., 2017. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151(2017), 147–160. https://doi.org/10.1016/j.catena.2016.11.032
Chuvieco, E., 2008. Teledeteccion ambiental. Barcelona: Ariel, S.A.
Corpoica. Ciencia, Tecnología e Innovación en el Sector Agropecuario (Diagnóstico para la Misión para la Transformación del Campo). Departamento Nacional de Planeación-Biblioteca. Último acceso: 13 de Mayo, 2020, de https://colaboracion.dnp.gov.co/CDT/Agriculturapecuarioforestal y pesca/Diagnóstico de la Ciencia, Tecnología e Innovación en el Sector Agropecuario-CORPOICA.pdf
DANE. Marco Maestro Rural Y Agropecuaria - Conceptualización Básica. DANE Información para todos. Último acceso: 13 de Mayo, 2020, de https://geoportal.dane.gov.co/descargas/mmra/pdf/2019_MMRA_DOCUMENTO_V1.pdf
Dash, J. P., Pearse, G. D., Watt, M. S., 2018. UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sensing, 10(8), 1–22. https://doi.org/10.3390/rs10081216
Díaz García-Cervigón, J. J., 2015. Estudio de Índices de vegetación a partir de imágenes aéreas tomadas desde UAS/RPAS y aplicaciones de estos a la agricultura de precisión [Universidad Complutense de Madrid]. https://eprints.ucm.es/31423/1/TFM_Juan_Diaz_Cervignon.pdf
ESA. Sentinel-2 User Handbook. Sentinel online. Último acceso: 8 de Julio, 2020, de https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook
FAO., 2013. Plan de acción de la estrategia global para el mejoramiento de las estadísticas agropecuarias y rurales. Roma: Banco Mundial
Flood, N., 2013. Seasonal composite landsat TM/ETM+ images using the medoid (a multi-dimensional Median). Remote Sensing, 5(12), 6481–6500. https://doi.org/10.3390/rs5126481
Foody, G. M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4
Gao, B. C., 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
Gevaert, C. M., Suomalainen, J., Tang, J., Kooistra, L., 2015. Generation of spectral-temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture application. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 3140–3146. https://doi.org/10.1109/JSTARS.2015.2406339
Gitelson, A. A., Kaufman, Y. J., Stark, R., Rundquist, D., 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9
González, X., Cancela, J., 2018. Utilización de imágenes de satélite y drones en horticultura. Canales sectoriales interempresas. Último acceso: 13 de Mayo, 2020, de https://www.interempresas.net/Horticola/Articulos/206464-Utilizacion-de-imagenes-de-satelite-y-drones-en-horticultura.html
HC, T., 2019. Pansharpening Sentinel-2 imagery in Google Earth Engine. Landscape Ecology & Conservation Lab. Último acceso: 13 de Mayo, 2020, de https://leclab.wixsite.com/spatial/post/pansharpening-sentinel-2-imagery-in-google-earth engine.
French, J., Montiel, K., Palmieri, V., 2014. La innovación en la agricultura: un proceso clave para el desarrollo sostenible. San José: IICA.
Jenerowicz, A., Woroszkiewicz, M., 2016. The pan-sharpening of satellite and UAV imagery for agricultural applications. En: Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII. Edinburgh, United Kingdom. 26-28 Septiembre. pp 674. https://doi.org/10.1117/12.2241645
Kaplan, G., 2018. Sentinel-2 pan sharpening-Comparative analysis. Proceedings, 2(7), 345. https://doi.org/10.3390/ecrs-2-05158
Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H. O., Kampel, M., Richey, J., Stadler, P., Crawford, J., Striegl, R., Vermote, E., Pahlevan, N., & Butman, D. 2019. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sensing of Environment, 224(January), 104–118. https://doi.org/10.1016/j.rse.2019.01.023
León, Y. Introducción a las Imágenes Satelitales. Nanopdf. Último acceso: 16 de Mayo, 2020, de https://nanopdf.com/download/introduccion-a-las-imagenes-satelitales_pdf.
Li, Y., Qu, J., Dong, W., Zheng, Y., 2018. Hyperspectral pansharpening via improved PCA approach and optimal weighted fusion strategy. Neurocomputing, 315, 371–380. https://doi.org/10.1016/j.neucom.2018.07.030
Liu, C., Frazier, P., Kumar, L., 2007. Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4), 606–616. https://doi.org/10.1016/j.rse.2006.10.010
MADR. (2018). Estrategia de Política Pública para la Gestión Integral de Riesgos Agropecuarios en Colombia. Minagricultura. Último acceso: 13 de Mayo, 2020, de https://www.minagricultura.gov.co/Documents/LIBRO%20ESTRATEGIA%20VERSION%20FINAL.pdf
Metternicht, G., 2003. Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24(14), 2855–2877. https://doi.org/10.1080/01431160210163074
Millard, K., Richardson, M., 2015. On the importance of training data sample selection in Random Forest image classification: A case study in peatland ecosystem mapping. Remote Sensing, 7(7), 8489–8515. https://doi.org/10.3390/rs70708489
Nonni, F., Malacarne, D., Pappalardo, S. E., Codato, D., Meggio, F., De Marchi, M., 2018. Sentinel-2 Data Analysis and Comparison with UAV Multispectral Images for Precision Viticulture. GI_Forum, 6(1), 105–116. https://doi.org/10.1553/giscience2018_01_s105
Palubinskas, G. 2013. Fast, simple, and good pan-sharpening method. Journal of Applied Remote Sensing, 7(1), 073526. https://doi.org/10.1117/1.jrs.7.073526
Peñuelas, J., Baret, F., & Filella, I., 1995. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31(2), 221-230.
Pla, M., Duane, A., Brotons, L., 2017. Potencial de las imágenes UAV como datos de verdad terreno para la clasificación de la severidad de quema de imágenes landsat: Aproximaciones a un producto útil para la gestión post incendio. Revista de Teledeteccion, 2017(49), 91–102. https://doi.org/10.4995/raet.2017.7140
Pla, M., Bota, G., Duane, A., Balagué, J., Curcó, A., Gutiérrez, R., Brotons, L., 2019. Calibrating Sentinel-2 imagery with multispectral UAV derived information to quantify damages in mediterranean rice crops caused by western swamphen (Porphyrio porphyrio). Drones, 3(2), 45. https://doi.org/10.3390/drones3020045
Puerto-Caro, N., Rios-Monroy, A., & Upegui, E., 2019. Estimación de la distribución espacial del control terrestre para el proceso fotogramétrico utilizando aeronaves remotamente pilotadas. Teledetección: hacia una visión global del cambio climático, 357–360.
Rocchini, D., 2007. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sensing of Environment, 111(4), 423–434. https://doi.org/10.1016/j.rse.2007.03.018
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 1973, Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS Symposium, NASA SP-351 I, pp. 309-317.
Sebem, E., González Rivera, C., de la Vega Panizo, R., Valverde Gonzalo, A., 2005. Aportación del NDVI y los sistemas expertos en la mejora de la clasificación temática de imágenes multiespectrales. En: Anais Do XII Symposium Brasileiro de Sensoriamento Remoto. Goiânia, Brasil, 16-21 Abril. pp 2763–2771.
Stuckens, J., Coppin, P. R., Bauer, M. E., 2000. Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sensing of Environment, 71(3), 282–296. https://doi.org/10.1016/S0034-4257(99)00083-8
Szantoi, Z., Smith, S. E., Strona, G., Koh, L. P., Wich, S. A., 2017. Mapping orangutan habitat and agricultural areas using Landsat OLI imagery augmented with unmanned aircraft system aerial photography. International Journal of Remote Sensing, 38(8–10), 2231–2245. https://doi.org/10.1080/01431161.2017.1280638
Traganos, D., Aggarwal, B., Poursanidis, D., Topouzelis, K., Chrysoulakis, N., Reinartz, P., 2018. Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: The case study of the Aegean and Ionian seas. Remote Sensing, 10(8), 1227. https://doi.org/10.3390/rs10081227
Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y., 2011. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468-3478. https://doi.org/10.1016/j.rse.2011.08.010
Zha, Y., Gao, J., & Ni, S., 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987
Zhao, L., Shi, Y., Liu, B., Hovis, C., Duan, Y., Shi, Z., 2019. Finer Classification of Crops by Fusing UAV Images and Sentinel-2A Data. Remote Sensing, 11(24), 3012. https://doi.org/10.3390/rs11243012
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International