Land use and land cover classification and change analysis in the area surrounding the Manglares Churute Ecological Reserve (Ecuador) using Sentinel-1 time series




Sentinel-1, classification, change analysis, Random Forests, buffer areas


Management practices adopted in protected natural areas often ignore the relevance of the territory surrounding the actual protected land (buffer area). These areas can be the source of impacts that threaten the protected ecosystems. This paper reports a case study where a time series of Sentinel-1 imagery was used to classify the land-use/land-cover and to evaluate its change between 2015 and 2018 in the buffer area around the Manglares Churute Ecological Reserve (REMCh) in Ecuador. Sentinel-1 scenes were processed and ground-truth data were collected consisting of samples of the main land-use/land-cover classes in the region. Then, a Random Forests (RF) classification algorithm was built and optimized, following a five-fold cross validation scheme using the training dataset (70% of the ground truth). The remaining 30% was used for validation, achieving an Overall Accuracy of 84%, a Kappa coefficient of 0.8 and successful class performance metrics for the main crops and land use classes. Results were poorer for heterogeneous and minor classes, nevertheless the performance of the classification was deemed sufficient for the targeted change analysis. Between 2015 and 2018, an increase in the area covered by intensive land uses was evidenced, such as shrimp farms and sugarcane, which replaced traditional crops (mainly rice and banana). Even though such changes only affected the land area around the natural reserve, they might affect its water quality due to the use of fertilizers and pesticides that easily. Therefore, it is recommended that these buffer areas around natural protected areas be taken into account when designing adequate environmental protection measures and polices.


Download data is not yet available.

Author Biographies

D.A. Vélez-Alvarado, Universidad Pública de Navarra

Departamento de Ingeniería

J. Álvarez-Mozos, Universidad Pública de Navarra

Department of Engineering, Institute for Innovation & Sustainable Development in Food Chain


Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5-32.

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. 2002. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.

Chuvieco, E., Huete, A. 2010. Fundamentals of satellite remote sensing. Boca Raton: CRC Press.

Dostalova, A., Wagner, W., Milenkovic, M., Hollaus, M. 2018. Annual seasonality in Sentinel-1 signal for forest mapping and forest type classification. International Journal of Remote Sensing, 39 (21), 7738-7760.

Elbers, J. 2011. Las áreas protegidas de América Latina: Situación actual y perspectivas para el futuro. Quito-Ecuador: UICN.

Hockings, M. 2003. Systems for Assessing the Effectiveness of Management in Protected Areas. BioScience, 53(9), 823-832.[0823:SFATEO]2.0.CO;2

IEE. 2020. Generación de Geoinformación para la Gestión del Territorio a Nivel Nacional Escala 1:25.000. En Instituto Espacial Ecuatoriano (IEE). Recuperado el 27 de julio de 2020, de

IGM. 2020. Visor Geográfico del Instituto Geográfico Militar Ecuador. In Geoportal IGM. Recuperado el 27 de julio de 2020, de

Jacob, A.W., Vicente-Guijalba, F., Lopez-Martinez, C., Lopez-Sanchez, J.M., Litzinger, M., Kristen, H. Mestre-Quereda, A., Ziółkowski, D., Lavalle, M., Notarnicola, C., Suresh, G., Antropov, O., Ge, S., Praks, J., Ban, Y., Pottier, E., Mallorquí Franquet, J.J., Duro, J., Engdahl, M.E. 2020. Sentinel-1 InSAR Coherence for Land Cover Mapping: A Comparison

of Multiple Feature-Based Classifiers. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 535-552.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., R Core Team, Benesty, M, Lescarbeau, R., Ziem, A., Scrucca, L. Tang, Y., Candan, C., Hunt, T. 2020. Package caret Classification and Regression Training. En The Comprehensive R Archive Network (CRAN). Recuperado el 27 de julio de 2020, de

Liaw, A., Wiener, M. 2020. Package randomForest Breiman and Cutler’s Random Forests for Classification and Regression. En The Comprehensive R Archive Network (CRAN). Recuperado el 27 de julio de 2020, de

MAG. 2017a. Boletín Situacional Arroz 2017, En Sistema de Información Pública Agropecuaria, Ministerio de Agricultura y Ganadería (MAG) de Ecuador. Recuperado el 27 de julio de 2020, de

MAG. 2017b. Boletín Situacional Caña de Azúcar 2017, En Sistema de Información Pública Agropecuaria, Ministerio de Agricultura y Ganadería (MAG) de Ecuador. Recuperado el 27 de julio de 2020, de

Mellor, A., Boukir, S., Haywood, A., Jones, S. 2015. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 155-168.

Mercier, A., Betbeder, J., Rumiano, F., Baudry, J., Gond, V., Blanc, L., Bourgoin, C., Cornu, G., Ciudad, C., Marchamalo, M., Poccard-Chapuis, R., Hubert-Moy, L. 2019. Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in Temperate and Tropical Landscapes. Remote Sensing, 11, 979.

Mestre-Quereda, A., Lopez-Sanchez, J.M., VicenteGuijalba, F., Jacob, A.W., Engdahl, M.E. 2020. Time Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4070-4084.

Morshed, Md.M., Islam Md.S., Lohano H.D., Shyamsundar, P. 2020. Production externalities of shrimp aquaculture on paddy farming in coastal Bangladesh. Agricultural Water Management, 238, 106213.

Navarrete, R. 2000. Atractivos turísticos naturales de la Reserva Ecológica Manglares Churute. Guayaquil: CEDEGE, Ministerio del Ambiente, Fundación Natura.

Orynbaikyzy, A., Gessner, U., Conrad, C. 2019. Crop type classification using a combination of optical and radar remote sensing data: a review. International Journal of Remote Sensing, 40(17), 6553-6595.

Ottinger, M., Clauss, K., Kuenzer, C. 2017. Largescale assessment of coastal aquaculture ponds with Sentinel-1 time series data. Remote Sensing, 9 (5), 440.

Palacios, N. 2016. Estudio de factibilidad para producir camarón de la especie Litopenaeus vannamei bajo un sistema de producción semi-intensivo en Ecuador. Escuela Agrícola Panamericana Zamorano Honduras. Proyecto de graduación. Recuperado de

R Core Team. 2017. R: A language and environment for statistical computing. En R Foundation for Statistical Computing, Vienna, Austria. Recuperado el 27 de julio de 2020, de

Rivadeneira-Roura, C., Rivera Rossi, J. 2007. Reserva Ecológica Manglares Churute. In: ECOLAP y MAE, 2007. Guía del Patrimonio de Áreas Naturales Protegidas del Ecuador. Quito: ECOFUND, FAN, DarwinNet, IGM.

Schlund, M., Erasmi, S. 2020. Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sensing of Environment, 246, 111814.

Small, D. 2011. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(8), 3081-3093.

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I.N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L’Abbate, M., Croci, R., Pietropaolo, A., Huchler, M., Rostan, F. 2012. GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9-24.

Tran, L., Nunan, L., Redman, R.M., Mohney, L.L., Pantoja, C.R., Fitzsimmons, K., Lightner, D.V. 2013. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms, 105, 45-55.

Yanez, B. 2000. Fase 1-Tomo IV-Propuesta de Manejo. In INEFAN/Fundación Natura, Plan de Manejo de la Reserva Ecológica Manglares Churute. Guayaquil: Fundación Natura CEDEGÉ.