Spatiotemporal patterns of Sentinel-2 observations at image- and pixel-level of the Mexican territory between 2015 and 2019

J.V. Solórzano, J.F. Mas, Y. Gao, J.A. Gallardo-Cruz


Sentinel-2 imagery has the highest temporal, spectral and spatial resolution to monitor land surface among the freely available multispectral collections. However, the possibility to use these images in different applications is conditioned by the number of cloudless observations available for a certain spatiotemporal window. Thus, the objective of this article is to analyze the number of Sentinel-2 observations available for the Mexican territory at image and pixel level. In the first case, the total number of available images and its cloud cover percentage was calculated; while in the second case, the number of cloudless observations was estimated for each pixel. Additionally, in order to take into account the territory diversity, the monthly mean number of cloudless observations, as well as the proportion of its surface with at least one cloudless observation in monthly, bimonthly, trimonthly and annual intervals, was computed for each one of the seven ecoregions of the country. The results show that annually, the number of valid observations per pixel is between 0 and 121 observations, while in monthly evaluations, between 0 and 6.58 observations. Additionally, in the 2017-2019 period annual observations can be obtained for the entire Mexican land surface, while in 2018-2019, monthly or trimonthly evaluations can be achieved, depending on the ecoregion. We consider that these results will provide useful information for researchers that are interested in using Sentinel-2 imagery for different applications.


Mexico; ecoregions; cloudless observations; Sentinel-2; optical satellite imagery

Full Text:



Agapiou, A., Alexakis, D. D., Sarris, A., Hadjimitsis, D. G. 2014. Evaluating the potentials of sentinel-2 for archaeological perspective. Remote Sensing, 6(3), 2176-2194.

Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., Hanssen, R. F. 2012. ESA's sentinel missions in support of Earth system science. Remote Sensing of Environment, 120, 84-90.

Boyd, D. S., Danson, F. M. 2005. Satellite remote sensing of forest resources: three decades of research development. Progress in Physical Geography, 29(1), 1-26.

Caballero, I., Fernández, R., Moreno Escalante, O., Mamán, L., Navarro, G. 2020. New Capabilities of Sentinel-2A/B Satellites Combined with in Situ Data for Monitoring Small Harmful Algal Blooms in Complex Coastal Waters. Scientific Reports, 10, 1-14.

Carrasco, L., O’Neil, A.W., Morton, R.D., Rowland, C.S. 2019. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sens., 11, 288. rs11030288

Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C. 2018. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sensing of Environment, 219, 145-61. rse.2018.09.002

Coluzzi, R., Imbrenda, V., Lanfredi, M., Simoniello, T. 2018. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses. Remote Sensing of Environment, 217, 426-443.

Comber, A., Wulder, M. A. 2019. Considering spatiotemporal processes in big data analysis: Insights from remote sensing of land cover and land use. Transactions in GIS, 23, 879-891.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., . . . Bargellini, P. 2012. Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36.

ESA (European Space Agency). (2016). Sentinel Data Access Annual Report. Disponible en

ESA (European Space Agency). (2018). Sentinel Data Access Annual Report. Disponible en

ESA (European Space Agency). Sentinel-2 MSI Technical Guide. Último acceso 25/05/2020, de

ESA (European Space Agency). Sentinel-2 MSI User Guide. Último acceso 28/05/2020, de

ESA (European Space Agency). SNAP. Último acceso 20/05/2020, de

Espinosa, D., Ocegueda, S., Aguilar, C., Flores, O, Llorente-Bousquets, J. 2008. El conocimiento biogeográfico de las especies y su regionalización natural, En: Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. Conabio, México, pp. 33-65.

Filipponi, F. 2018. BAIS2: Burned Area Index for Sentinel-2. Proceedings 2nd International Electronic Conference on Remote Sensing, 22 March–5 April 2018, 2, 364.

GEE (Google Earth Engine). Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Último acceso 05/03/2020,

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.

Griffiths, P., Nendel, C., Hostert, P. 2019. Intra-Annual Reflectance Composites from Sentinel-2 and Landsat for National-Scale Crop and Land Cover Mapping. Remote Sensing of Environment, 220, 135-51.

Heckel, K., Urban, M., Schratz, P., Mahecha, M. D., Schmullius, C. 2020. Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and -2 Data Fusion. Remote Sensing, 12, 302.

INEGI (Instituto Nacional de Estadística), CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad), INE (Instituto Nacional de Ecología). 2008. Ecorregiones terrestres de México 1:1000000. Disponible en

Li, J., Roy, D. P. 2017. A global analysis of Sentinel-2a, Sentinel-2b and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9, 902.

Lima, T.A., Beuchle, R., Langner, A., Griess, V.C., Achard, F. 2019. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sensing, 11, 961.

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, F., 2017 Sen2Cor for Sentinel-2. En: Image and Signal Processing for Remote Sensing XXIII. Varsovia, Polonia. pp 1042704-1042701.

Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., Berger, M. 2012. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 120, 91-101.

Melesse, A. M., Weng, Q., S.Thenkabail, P., Senay, G. B. 2007. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling. Sensors, 7, 3209-3241.

Pesaresi, M., Corbane, C., Julea, A., Florczyk, A.J., Syrris, V., Soille, P. 2016. Assessment of the AddedValue of Sentinel-2 for Detecting Built-up Areas. Remote Sensing, 8, 299. rs8040299

R Core Team. (2020). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Disponible en

Ramoelo, A., Cho, M., Mathieu, R., Skidmore, A. K. 2015. Potential of Sentinel-2 spectral configuration to assess rangeland quality. Journal of Applied Remote Sensing, 9, 094096.

Roteta, E., Bastarrika, A., Padilla, M., Storm, T., Chuvieco, E. 2019. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment, 222, 1-17.

Solórzano, J. V., Gallardo-Cruz, J. A., Peralta-Carreta, C. 2020. Potencial del acervo de imágenes Landsat disponible en Google Earth Engine para el estudio del territorio mexicano. Investigaciones Geográficas, 101(Abril), e59821.

Sudmanns, M., Tiede, D., Augustin, H., Lang, S. 2019. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. International Journal of Digital Earth, 1-17.

Van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A. 2014. Potential of ESA's Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124-133.

Viola, D., McKay, C.P., Navarro-González, R. 2019. A Method for Monitoring Glacial Loss and Temperature Variation Using Satellite Observations: Case Study of Pico de Orizaba and Iztaccíhuatl (Mexico). Arctic, Antarctic, and Alpine Research, 51(1), 379-396. 019.1648163

Whitcraft, A. K., Becker-Reshef, I., Justice, C. O. 2015. A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sensing, 7, 1461-1481.

White, J. C., Wulder, M. A. 2014. The Landsat observation record of Canada: 1972 2012. Canadian Journal of Remote Sensing, 39(6), 455-467.

Wickham, H., Averick , M., Bryan, J., Chang, W., D'Agostino McGowan, L., François , R., . . . Yutani, H. 2019. Tidyverse. Journal of Open Source Software, 4(43), 1686.

Wilson, A. M., Jetz, W. 2016. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLoS Biology, 14(3), e1002415.

Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., . . . Roy, D. P. 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 185, 271-283.

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., . . . Zhang, X. 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, 111383. doi:10.1016/j.rse.2019.111383

Zhou, Y., Dong, J., Liu, J., Metternicht, G., Shen, W., You, N., . . . Xiao, X. 2019. Are there sufficient Landsat observations for retrospective and continuous monitoring of land cover changes in China? Remote Sensing, 11, 1808.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953