Multitemporal water quality study in Sitjar (Castelló, Spain) reservoir using Sentinel-2 images

C. Radin, X. Sòria-Perpinyà, J. Delegido

Abstract

Water quality is a subject of intense scientific inquiry because of its repercussion in human’s life, agriculture or even energy generation. Remote sensing can be used to control water masses by analyzing biophysical variables. Chlorophyll-a (Chl-a) and Total Suspended Solids (SS) are a well-known feature of water quality. These variables have been measured in Sitjar reservoir (Castelló, Spain) as a part of the project Ecological Status of Aquatic Systems with Sentinel Satellites (ESAQS), in order to compare the results with satellite reflectance data. Two processes were compared to correct atmospherically the level 1C Sentinel 2 (S2) images. The results show that Case 2 Regional Coast Colour (C2RCC) method, with a Root Mean Square Error of 2.4 mg/m3 (Chl-a) and 3.9 g/m3 (SS) is a better tool for atmospheric correction in this scenario due to the low turbidity levels of water. Besides, in this paper we study the Chl-a and SS variability through April 2017 to March 2019 with fourteen S2 images with the automatic products from C2RCC correction, finding correlations between them and the climate and reservoir conditions. Chl-a increase from 0.4 mg/m3 to 9.5 mg/m3 while SS rise 18 g/m3 in this period, which makes Sitjar as an oligotrophic-mesotrophic system. The correlation results demonstrate an excellent correspondence between them (R2=0.9). Sitjar reservoir lost almost 40 hm3 at the beginning of the study, which it had a possible relationship with the increasing parameter values. Also discussed was the role played by the climatology in the reservoir conditions due to the changes in the water structure with seasons, which explains the ariability through the year.

 


Keywords

Sitjar; remote sensing; reservoir; turbidity; chlorophyll-a; suspended matter; Sentinel 2

Full Text:

PDF

References

AEMET, 2020. Agencia Estatal de Meteorología. Centro de descargas OpenData. Recuperado en abril 2020, disponible en https://opendata.aemet.es/centrodedescargas/inicio

Apha, 1992. Standard methods for the examination of water and wastewater. American Public Health Association. USA. 1105 pp.

Arbat-Botfill, M., 2015. Distribución de temperatura y velocidad en embalses. Tesis Doctoral. Universitat Politècnica de Catalunya.

Armengol, J. (1998). Efectos ecológicos del dragado y vaciado del embalse de Barasona. Limnetica, 14, 17-33.

Armengol, J. (2000). Análisis y Valoración de los embalses como ecosistemas. En Conferencia Internacional del Seminario Permanente Ciencia y Tecnología del Agua, 6 (pp. 1-20). Iberdrola.

Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher, S., Ruescas, A. 2016. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Proceedings of the “ESA Living Planet Symposium 2016”, Prague, Czech Republic, 9-13 May 2016.

Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22, 361-369. https://doi.org/10.4319/lo.1977.22.2.0361

CHJ, 2010. Confederación hidrográfica del Júcar. La primera confederación hidrográfica del Júcar (1934- 1942): 75 años de gestión del agua. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente.

CHJ, 2020. Confederación hidrográfica del Júcar. Parte semanal del estado de embalses. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. Recuperado en abril de 2020, disponible en https://www.chj.es/es-es/medioambiente/estadoembalses/Paginas/Estadoembalses.aspx

CNIG, 2020. Centro Nacional de Información Geográfica: Centro de Descargas (CdD). Imagen aérea de 2018 generada por Dirección General del Instituto Geográfico Nacional (IGN) y disponible en http://centrodedescargas.cnig.es

Delegido, J., Urrego, P., Vicente, E., Sòria-Perpinyà, X., Soria, J.M., Pereira-Sandoval, M., Ruiz-Verdú, A., Peña, R., Moreno, J. 2019. Turbidez y profundidad de disco de Secchi con Sentinel-2 en embalses con diferente estado trófico en la Comunidad Valenciana. Revista de Teledetección, 54, 15-24. https://doi.org/10.4995/raet.2019.12603

ESA, 2020. European Space Agency, Recuperado en abril de 2020, disponible en https://sentinel.esa.int/

Jeffrey, S.T., Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz., 167, 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3

Kwon, Y.S., Pyo, J., Kwon, Y.H., Duan, H., Cho, K.H., Park, Y., 2020. Drone-based hyperspectral remote sensing of cyanobacteria using vertical cumulative pigment concentration in a deep reservoir. Remote Sens. Environ. 236, 111517. https://doi.org/10.1016/j.rse.2019.111517

Kyryliuk, D., Kratzer, S., 2019. Evaluation of Sentinel-3A OLCI Products Derived Using the Case-2 Regional CoastColour Processor over the Baltic Sea. Sensors, 19, 3609. https://doi.org/10.3390/s19163609

Margalef, R. (1983). Limnología. Ediciones Omega. Barcelona. 1010 pp.

Martínez, A., 2009. Estudio y análisis de la calidad del agua del embalse de Bellús mediante el desarrollo de un modelo de eutrofización. Tesis de Máster, Universidad de Valencia.

Muñoz, M.C., 2013. Obras del pantano de Sichar. Ariadna: cultura, educación y tecnología, 1(2), 124-131. https://doi.org/10.6035/Ariadna.2013.2.17

Ordoñez, J., 2010. Limnología del embalse de Sau. Relaciones del zooplancton, la clorofila y los sólidos en suspensión con el clima lumínico del agua. Tesis Doctoral. Universitat de Barcelona.

Pereira-Sandoval, M. et al., 2019. Calibration and validation of algorithms for the estimation of chlorophyll-a concentration and Secchi depth in inland waters with Sentinel-2. Limnetica, 38(1), 471-487. https://doi.org/10.23818/limn.38.27

Ruiz-Verdú, A., De Hoyos, C., Domínguez, J.A., Peña, R. 2003. Estudio de la composición del fitoplancton en embalses españoles mediante teledetección. Ingeniería civil, ISSN 0213-8468, N° 131.

Shoaf, W.T., Lium, B.W., 1976. Improved extraction of chlorophyll a and b from algae using dimethyl sulphoxide. Limnol. Oceanogr., 21, 926-928. https://doi.org/10.4319/lo.1976.21.6.0926

Sòria-Perpinyà, X., 2017. Noves tecnologies per a la determinació de la qualitat ecològica de l’aigua en embassaments. Tesis Doctoral, Universidad de Valencia.

William, M. 2011. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing, 32(21), 6855-6899. https://doi.org/10.1080/01431161.2010.512947

Abstract Views

1088
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Phycocyanin Monitoring in Some Spanish Water Bodies with Sentinel-2 Imagery
Rebeca Pérez-González, Xavier Sòria-Perpinyà, Juan Miguel Soria, Jesús Delegido, Patricia Urrego, María D. Sendra, Antonio Ruíz-Verdú, Eduardo Vicente, José Moreno
Water  vol: 13  issue: 20  first page: 2866  year: 2021  
doi: 10.3390/w13202866



 

This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet