The Copernicus EMS Validation service as a vector for improving the emergency mapping based on Sentinel data

Authors

DOI:

https://doi.org/10.4995/raet.2020.13770

Keywords:

Copernicus, Emergencies, CEMS, validation, Sentinel-1, Sentinel-2, mapping, flood, fire

Abstract

The Copernicus Emergency Management Service (CEMS) is coordinated by the European Commission and “provides all actors involved in the management of natural disasters, man-made emergency situations, and humanitarian crises with timely and accurate geo-spatial information derived from satellite remote sensing and complemented by available in situ or open data sources”. It includes two components, Early Warning and Monitoring and Mapping. The latter provides on demand geo-spatial information derived from satellite imagery during all phases of the disaster management cycle. It includes 3 systems, Rapid Mapping (RM), Risk and Recovery Mapping (RRM), and a Validation Service. RM provides geospatial information immediately after a disaster to assess its impact; RRM in the prevention, preparation and reconstruction phases; and the Validation Service is in charge of validating and verifying the products generated by both, and of collecting and analyzing users’ feedback. The wide spectrum of activities framed in the Validation Service has allowed it to become a vector to improve the Mapping component through the testing of new methodologies, data input type, or approach for the creation of emergency cartography in the frame of the CEMS. The present paper introduces the main investigation lines based on Sentinel-1 and 2 for flood and fire monitoring that could be implemented in the CEMS services taking into consideration the characteristics of the Mapping component in terms of products to create and time constraints. The applicability of Sentinel-1 for flood monitoring based on the backscattering, the MultiTemporal Coherence (MTC), and dual polarization; and for burnt area delineation based on MTC was studied, while Sentinel-2 was used for burnt area delineation based on vegetation indices. Results indicate that proposed methodologies might be appropriate for the creation of crisis information products in large areas, due to the relative easy and fast implementation compared to classic photo interpretation, although further applicability analyses should be carried out.

Downloads

Download data is not yet available.

Author Biographies

U. Donezar-Hoyos, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

L. Albizua-Huarte, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

E. Amezketa-Lizarraga, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

I. Barinagarrementeria-Arrese, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

R. Ciriza-Labiano, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

T. de Blas-Corral, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

A. Larrañaga-Urien, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

F. Ros-Elso, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

A. Tamés-Noriega, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

M. Viñuales-Lasheras, Tracasa

Tracasa. Departamento de Ingeniería y Sistemas Territoriales

M. Broglia, European Commission

Joint Research Centre (JRC)

References

Broglia, M., Corbane, C., Carrion, D., Lemoine, G., and Pesaresi, M. 2010. Validation Protocol for Emergency Response Geo-information Products. JRC59838. JRC technical reports. Luxembourg. http://publications.jrc.ec.europa.eu/repository/handle/JRC59838.

Closson, D., Milisavljevic, N. 2017. InSAR Coherence and Intensity Changes Detection. In Mine Action - The Research Experience of the Royal Military Academy of Belgium. https://doi.org/10.5772/65779

Cocke, A.E., Fule, P.Z., Crouse, J.E. 2005. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire, 14(2), pp. 189-198. https://doi.org/10.1071/WF04010

CEMS, Copernicus Emergency Management Service, 2017. Early Warning and monitoring. Floods and forest fires. Available at: https://emergency.copernicus.eu/mapping/ems/early-warningsystems-efas-and-effis

CEMS, Copernicus Emergency Management Service, 2018. Copernicus Emergency Management Service - Mapping, Manual of Operational Procedures. Available at: https://emergency.copernicus.eu/mapping/sites/default/files/files/EMS_Mapping_Manual_of_Procedures_v1_3_final.pdf

CEMS, Copernicus Emergency Management Service, 2020. Service overview. https://emergency.copernicus.eu/mapping/sites/default/files/files/CopernicusEMS-Service_Overview_Brochure.pdf

Copernicus Space Component Data Access. Available: https://spacedata.copernicus.eu/

Copernicus Space Component Data Access (ESA). 2020. Contributing Mission. Available at: https:// spacedata.copernicus.eu/web/cscda/data-offer/mission-groups

Donezar, U., Larrañaga, A., Tamés, A., Sánchez, C., Albizua, L., Ciriza, R., Del Barrio, F. 2017. Applicability of Sentinel-1 and Sentinel-2 Images for the Detection and Delineation of Crisis Information in the Scope of Copernicus EMS Services. Revista de Teledetección, 50, 49-57. https://doi.org/10.4995/raet.2017.8896

Donezar, U., De Blas, T., Larrañaga, A., Ros, F., Albizua, L., Steel, A., Broglia, M. 2019. Applicability of the MultiTemporal Coherence Approach to Sentinel-1 for the Detection and Delineation of Burnt Areas in the Context of the Copernicus Emergency Management Service. Remote Sens., 11(22), 2607. https://doi.org/10.3390/rs11222607

ESA, a. European Space Agency. N.d. a. Sentinel Online. Technical Guides. Available at: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/products

ESA, b. European Space Agency. N.d. b. Sentinel Online. Technical Guides. Available at: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-single-look-complex

ESA, c. European Space Agency. N.d. c. Sentinel Online. Technical Guides. Available at: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types

ESA, d. European Space Agency (ESA). N.d. d Step (Science toolbox exploitation platform). Sen2Cor. Available at: https://step.esa.int/main/third-partyplugins-2/sen2cor

ESA, e. European Space Agency (ESA). N.d. e. ERS Radar Courses. Available at: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar/applications/radar-courses/content-2/-/asset_publisher/qIBc6NYRXfnG/content/radar-course-2-parameters-affecting-radarbackscatter

Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F. 2017a. Part A - Interferometric SAR image processing and interpretation. In InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation; Fletcher, K., Ed.; ESA Publications: Noordwijk, The Netherlands.

Ferretti, A., Monti Guarnieri, A., Prati, C., Rocca, F. 2017b. Part B - InSAR processing: A practical approach. In InSAR Principles: Guidelines for SAR interferometry processing and interpretation; Fletcher, K., Ed.; ESA Publications: Noordwijk, The Netherlands.

Fornacca, D., Ren, G.P., Xiao, W. 2018. Evaluating the best spectral indices for the detection of burn scars at several post-fire dates in a mountainous region of Northwest Yunnan, China. Remote Sensing, 10(8), 1196. https://doi.org/10.3390/rs10081196

Henry, J.B., Chastanet, P., Fellah, K., Desnos, Y.L. 2006. Envisat Multi-Polarized ASAR Data for Flood Mapping. International Journal of Remote Sensing, 27(10), 1921-1929. https://doi.org/10.1080/01431160500486724

Jo, M., Batuhan, O., Zhang, B., Wdowinski, S. 2018. Flood extent mapping using dual-polarimetric Sentinel-1 synthetic aperture radar imagery. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-3, pp. 711-713. https://doi.org/10.5194/isprsarchives-XLII-3-711-2018

Lencinas, J.D., Siebert, A. 2009. Relevamiento de bosques con información satelital: Resolución espacial y escala. Quebracho, 17(1,2), 101-105. Lu, Z., Zhang, L. 2014. Frontiers of Radar Remote Sensing. Photogrammetric Engineering & Remote Sensing, 80, 5-13.

Pekel J.F., Cottam A., Gorelick N., Belward, A.S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418-422. https://doi.org/10.1038/nature20584

Priego, A., Bocco, G., Mendoza, M., Garrido, A. 2010. Propuesta para la generación semiautomatizada de unidades de paisaje: Serie Planeación territorial. Procedimiento para el levantamiento y cartografía de las unidades superiores de los paisajes a escalas 1:50,000 y 1:250,000, pp. 33-52., UNAM, Mexico.

Shen, X., Wang, D., Mao, K., Anagnostou, E., Hong, Y. 2019. Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sensing, 11, 879. https://doi.org/10.3390/rs11070879

Tanase, M.A., De la Riva, J., Santoro, M., PerezCabello, F., and Kasischke, E.S. 2011. Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sensing of Environment, 115, 2075-2085. https://doi.org/10.1016/j.rse.2011.04.009

Textron systems. Available at https://www.textronsystems.com/products/feature-analyst

U.S. Geological Survey (USGS). N.d. EROS Data Center. SRTM 1 Arc-Second global. Available at: https://www.usgs.gov/centers/eros/science/ usgs-eros-archive-digital-elevation-shuttle-radartopography-mission-srtm-1-arc?qt-science_center_ objects=0#qt-science_center_objects

Downloads

Published

2020-11-27