Comparison of OMI-DOAS total ozone column with ground-based measurements in Argentina

Authors

  • P. F. Orte UNIDEF (CITEDEF-CONICET); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) https://orcid.org/0000-0003-1826-3741
  • E. Luccini CONICET; Pontificia Universidad Católica Argentina
  • E. Wolfram Servicio Meteorológico Nacional; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Universidad Tecnológica Nacional
  • F. Nollas Servicio Meteorológico Nacional
  • J. Pallotta Centro de Investigaciones en Láseres y Aplicaciones, UNIDEF (CITEDEF-CONICET)
  • R. D'Elia Centro de Investigaciones en Láseres y Aplicaciones, UNIDEF (CITEDEF-CONICET); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • G. Carbajal Servicio Meteorológico Nacional
  • N. Mbatha University of Zululand
  • N. Hlongwane University of Zululand

DOI:

https://doi.org/10.4995/raet.2020.13673

Keywords:

Total ozone column, OMI, Dobson, SAOZ, Argentina

Abstract

Total ozone column (TOC) measurements through the Ozone Monitoring Instrument (OMI/NASA EOSAura) are compared with ground-based observations made using Dobson and SAOZ instruments for the period 2004–2019 and 2008–02/2020, respectively. The OMI data were inverted using the Differential Optical Absorption Spectroscopy algorithm (overpass OMI-DOAS). The four ground-based sites used for the analysis are located in subpolar and subtropical latitudes spanning from 34°S to 54°S in the Southern Hemisphere, in the Argentine cities of Buenos Aires (34.58°S, 58.36°W; 25 m a.s.l.), Comodoro Rivadavia (45.86°S, 67.50°W; 46 m a.s.l.), Río Gallegos (51.60°S, 69.30°W; 72 m a.s.l.) and Ushuaia (54.80°S, 68.30°W; 14 m a.s.l.). The linear regression analyzes showed correlation values greater than 0.90 for all sites. The OMI measurements revealed an overestimation of less than 4"‰% with respect to the Dobson instruments, while the comparison with the SAOZ instrument presented a very low underestimation of less than 1"‰%.

Downloads

Download data is not yet available.

Author Biographies

P. F. Orte, UNIDEF (CITEDEF-CONICET); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Investigador Asociado

Centro de Investigaciones en Láseres y Aplicaciones

E. Luccini, CONICET; Pontificia Universidad Católica Argentina

Investigador

Centro de Excelencia en Productos y Procesos de Córdoba

Facultad de Química e Ingeniería del Rosario

E. Wolfram, Servicio Meteorológico Nacional; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Universidad Tecnológica Nacional

Investigador

Facultad Regional Buenos Aires

J. Pallotta, Centro de Investigaciones en Láseres y Aplicaciones, UNIDEF (CITEDEF-CONICET)

Investigador

N. Mbatha, University of Zululand

Investigador

Department of Geography

N. Hlongwane, University of Zululand

Department of Geography

References

Antón, M., López, M, Vilaplana, J.M., Kroon, M., McPeters, R., Bañón, M., Serrano, A. 2009. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian Peninsula. J. Geophys. Res., 114, D14307, https://doi.org/10.1029/2009JD012003

Balis, D., Kroon, M., Koukouli, M.E., Brinksma, E.J., Labow, G., Veefkind, J.P., McPeters, R.D. 2007. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 112, D24S46, https://doi.org/10.1029/2007JD008796

Banerjee, A., Fyfe, J.C., Polvani, L.M., Waugh, D., Chang, K.L. 2020. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 579, 544-548. https://doi.org/10.1038/ s41586-020-2120-4

Basher, R.E. 1982. Ozone absorption coefficients’ Role in Dobson instrument ozone measurement accuracy, Geophys. Res. Lett., 9, 11. https://doi.org/10.1029/GL009i011p01235

Basher R.E. 1985. Review of the Dobson Spectrophotometer and its Accuracy. In: Zerefos C.S., Ghazi A. (eds) Atmospheric Ozone. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5313- 0_78

Bhartia, P.K., Wellemeyer, C. 2002. TOMS-V8 total O3 algorithm, OMI Algorithm Theoretical Basis Document, vol. II, OMI Ozone Products, pp. 15-31, edited by P.K. Bhartia,, NASA Goddard Space Flight Cent., Greenbelt, Md.

Bian, L., Zhong, L., Zhang, D., Zheng, X., Lu, L. 2012. Validation of total ozone data between satellite and ground-based measurements at Zhongshan and Syowa stations in Antarctica. Adv. Polar Sci., 23, 196- 203. https://doi.org/10.3724/SP.J.1085.2012.00196

Brewer, A.W. 1949. Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere, Q.J. Roy. Meteor. Soc., 75, 351-363. https://doi.org/10.1002/ qj.49707532603

Cañellas, J. 2017. Control de calidad de la serie de Ozono Total de Buenos Aires, Universidad de Buenos Aires, https://doi.org/10.13140/RG.2.2.31527.29601

Carbajal Benítez, G., Cupeiro, M., Sánchez, R., Agüero, J.D., Barlasina, M.E., Nollas, F. 2014. Caracterización de la Columna Total de Ozono medido con el Espectrofotómetro Dobson en cuatro estaciones en la Argentina., Actas trabajos completos E-ICES 9, ISBN 978-987-1323-36-4- 1a ed. - Ciudad Autónoma de Buenos Aires: Comisión Nacional de Energía Atómica - CNEA, 2014. 250 p.

Chubachi, S. 1984. Preliminary result of ozone observations at Syowa Station from February, 1982 to January, 1983, Mem. Natl. Inst. Polar Res. Jpn. Spec., 34, 13-20. https://doi.org/10.1007/978-94-009-5313-0_58

Dhomse, S.S., Kinnison, D., Chipperfield, M.P., Salawitch, R.J., Cionni, I., Hegglin, M.I., Abraham, N.L., Akiyoshi, H., Archibald, A.T., Bednarz, E.M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S.C., Hassler, B., Horowitz, L.W., Hu, R.-M., Jöckel, P., Josse, B., Kirner, O., Kremser, S., Langematz, U., Lewis, J., Marchand, M., Lin, M., Mancini, E., Marécal, V., Michou, M., Morgenstern, O., O’Connor, F.M., Oman, L., Pitari, G., Plummer, D.A., Pyle, J.A., Revell, L.E., Rozanov, E., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tilmes, S., Visioni, D., Yamashita, Y., Zeng, G. 2018. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409- 8438, https://doi.org/10.5194/acp-18-8409-2018

Dhomse, S.S., Feng, W., Montzka, S.A., Hossaini, R., Keeble, J., Pyle, J.A., Daniel, J.S., Cipperfield, M.P. 2019. Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nat. Commun. 10, 5781. https://doi.org/10.1038/s41467-019- 13717-x

Dobson, G.M.B. 1931. A photoelectric spectrophotometer for measuring the amount of atmospheric ozone, Proc. Phys. Soc. 43, 324. https://doi.org/10.1088/0959-5309/43/3/308

Dobson, G.M.B., Harrison, D.N. 1926. Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions, Proc. Roy. Soc. London, A110, 660. https://doi.org/10.1098/rspa.1926.0040

Dobson, G.M.B. 1956. Origin and distribution of polyatomic molecules in the atmosphere, Proc. R. Soc. A, 236, 187-193. https://doi.org/10.1098/ rspa.1956.0127

Evans R.D. 2009. Operations Handbook - Ozone observations with a Dobson spectrophotometer: revised 2008, World Meteorological Organization TD-No. 1469; GAW Report- No. 183.

Farman, J.C., Gardiner, B.G., Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NO interaction, Nature, 315, 207- 210. https://doi.org/10.1038/315207a0

Hendrick, F., Pommereau, J.P., Goutail, F., Evans, R.D., Ionov, D., Pazmino, A., Kyrö, E., Held, G., Eriksen, P., Dorokhov, V., Gil, M., Van Roozendael, M. 2011. NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations, Atmos. Chem. Phys., 11, 5975-5995, https://doi.org/10.5194/acp11-5975-2011

Kim, J., Kim, J., Cho, H.K., Herman, J., Park, S.S., Lim, H.K., Kim, J.H., Miyagawa, K., Lee, Y.G. 2017. Intercomparison of total column ozone data from the Pandora spectrophotometer with Dobson, Brewer, and OMI measurements over Seoul, Korea, Atmos. Meas. Tech., 10, 3661-3676. https://doi.org/10.5194/amt-10-3661-2017

Kuttippurath, J., Nair, P.J. 2017. The signs of Antarctic ozone hole recovery. Sci. Rep., 7, 585. https://doi.org/10.1038/s41598-017-00722-7

Kuttippurath, J., Kumar, P., Nair, P.J., Chakraborty, A. 2018. Accuracy of satellite total column ozone measurements in polar vortex conditions: Comparison with ground-based observations in 1979-2013. Remote Sens. Environ., 209, 648-659. https://doi.org/10.1016/j.rse.2018.02.054

Levelt, P.F., Hilsenrath, E., Leppelmeier, G.W., Van den Oord, G.H.J., Bhartia, P.K., Tamminen, J., De Haan, J.F., Veefkind, J.P. 2006. The Ozone Monitoring Instrument, IEEE T. Geosci. Remote Sens., 44, 1093- 1101. https://doi.org/10.1109/TGRS.2006.872336

London, J. 1985. The observed distribution of atmospheric ozone and its variations, ozone in the free atmosphere, edited by: Whitten, R.C. and Prasad, S.S., New York, Van Nostrand Reinhold, chap. 1, 11-80.

McLandress, C., Shepherd, T.G., Scinocca, J.F., Plummer, D.A., Sigmond, M., Jonsson, A.I., Reader, M.C. 2011. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Clim., 24, 1850-1868. https://doi.org/10.1175/2010JCLI3958.1

McPeters, R., Kroon, M., Labow, G., Brinksma, E., Balis, D., Petropavlovskikh, I., Veefkind, J.P., Bhartia, P.K., Levelt, P.F. 2008. Validation of the Aura Ozone Monitoring Instrument total column ozone product, J. Geophys. Res., 113, D15S14, https://doi.org/10.1029/2007JD008802

Moeini, O., Vaziri Zanjani, Z., McElroy, C.T., Tarasick, D.W., Evans, R.D., Petropavlovskikh, I., Feng, K.H. 2019. The effect of instrumental stray light on Brewer and Dobson total ozone measurements, Atmos. Meas. Tech., 12, 327-343. https://doi.org/10.5194/amt-12-327-2019.

Orte, P.F., Salvador, J., Wolfram, E., D’Elia, R., Nagahama, T., Kojima, Y., Tanada, R., Kuwahara, T., Morihira, A., Quel, E., Mizuno, A. 2011. Millimeter wave radiometer installation in Río Gallegos, southern Argentina, Int. Conf. on Applications of Opt. and Photonics, edited by: Costa, M.F.M., Vol. 8001, Proceedings of SPIE, https://doi.org/10.1117/12.894578

Orte, P.F., Wolfram, E., Salvador, J., Mizuno, A., Bègue, N., Bencherif, H., Bali, J.L., D’Elia, R., Pazmiño, A., Godin-Beekmann, S., Ohyama, H., Quiroga, J. 2019. Analysis of a southern subpolar short-term ozone variation event using a millimetrewave radiometer, Ann. Geophys., 37, 613-629. https://doi.org/10.5194/angeo-37-613-2019

Pazmiño A. 2010. O3 and NO2 vertical columns using SAOZ UV-Visible spectrometer. EPJ Web of Conferences, EDP Sciences, 2010, 9, pp.201-214. https://doi.org/10.1051/epjconf/201009016

Polvani, L.M., Waugh, D.W., Correa, G.J.P., Son, S.W. 2011. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795-812. https://doi.org/10.1175/2010JCLI3772.1

GAW report, 2019. Region III, International Comparison of Dobson of Spectrophotometers, Villa Ortuzar Observatory, Argentina, 2019. SMN, WMO. https://public.wmo.int/en/events/meetings/regional-2019- latin-american-dobson-intercomparison-campaign

Salvador, J.O. 2011. Estudio del comportamiento de la capa de ozono y la radiación UV en la Patagonia Austral y su proyección hacia la comunidad, Tesis de doctorado, UTN-FRBA.

Salvador, J., Wolfram, E., Orte, F., D’Elia, R., Bulnes, D., Quel, E. 2013. Observations of UV radiation and total ozone column using ground based instruments in Río Gallegos, Argentina (51° 36’ S, 69° 19’ W). AIP Conference Proceedings, 364-367, 1531. https://doi.org/10.1063/1.4804782

Solomon, S., Ivy, D.J., Kinnison, D., Mills, M.J., Neely, R.R., Schmidt, A. 2016. Emergence of healing in the Antarctic ozone layer, Science, 353, 269-274, https://doi.org/10.1126/science.aae0061

Son, S.W., Gerber, E.P., Perlwitz, J., Polvani, L.M., Gillett, N.P., Seo, K.H., ... Austin, J. 2010. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res., 115, D00M07, https://doi.org/10.1029/2010JD014271

Stolarski, R.S., Krueger, A.J., Schoeberl, M.R., McPeters, R.D., Newman, P.A., Albert, J.C. 1986. Nimbus 7 SBUV/TOMS measurements of the springtime antarctic ozone hole. Nature, p. 811. https://doi.org/10.1038/322808a0

Vaz Peres, L., Bencherif, H., Mbatha, N., Passaglia Schuch, A., Toihir, A.M., Bègue, N., Portafaix, T., Anabor, V., Kirsch Pinheiro, D., Paes Leme, N.M., Bageston, J.V., Schuch, N.J. 2017. Measurements of the total ozone column using a Brewer spectrophotometer and TOMS and OMI satellite instruments over the Southern Space Observatory in Brazil, Ann. Geophys., 35, 25-37. https://doi.org/10.5194/angeo-35-25-2017

Veefkind, J.P., de Haan, J.F., Brinksma, E.J., Kroon, M., Levell, P.F. 2006. Total Ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique, IEEE Trans. Geosci. Remote Sens., 44, 1239-1244. https://doi.org/10.1109/TGRS.2006.871204

Wolfram, A.E., Salvador, J., D’Elia, R., Casiccia, C., Leme, N.P., Pazmiño, A., Porteneuve, J., Godin-Beekman, S., Nakane, H., Quel, E.J. 2008. New Differential absorption lidar for stratospheric ozone monitoring in Patagonia, south Argentina, J. Opt. A, 10, 589 595. https://doi.org/10.1088/1464-4258/10/10/104021

Wolfram, E.A., Salvador, J., Orte, F., D’Elia, R., Godin-Beekmann, S., Kuttippurath, J., Pazmiño, A., Goutail, F., Casiccia, C., Zamorano, F., Paes Leme, N., Quel, E.J. 2012. The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: a multiinstrument study, Ann. Geophys., 30, 1435-1449. https://doi.org/10.5194/angeo-30-1435-2012

World Meteorological Organization (WMO). 2018. Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring ProjectReport No. 58.

World Meteorological Organization (WMO). 2010. Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring ProjectReport No. 52, Geneva, Switzerland, 2011.

World Meteorological Organization (WMO): Scientific Assessment of Ozone Depletion: 2014 Global Ozone Research and Monitoring Project Report, World Meteorological Organization, Geneva, Switzerland, p. 416, 2014.

Zerefos C. 1997 Factors Influencing the Transmission of Solar Ultraviolet Irradiance through the Earth’s Atmosphere. In: Zerefos C.S., Bais A.F. (eds) Solar Ultraviolet Radiation. NATO ASI Series (Series I: Global Environmental Change), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03375-3_9

Downloads

Published

2020-12-28

Issue

Section

Research articles