Using hipersepctral images for decay detection in Pinus halepensis (Mill.) in the Mediterranean forest

Authors

  • M.L. Guillen-Climent Agresta S. Coop.
  • H. Mas Centre per a la Investigació i Experimentació Forestal (CIEF)
  • A. Fernández-Landa Agresta S. Coop.
  • N. Algeet-Abarquero Agresta S. Coop.
  • J.L. Tomé Agresta S. Coop.

DOI:

https://doi.org/10.4995/raet.2020.13289

Keywords:

Remote sensing, Forest declaim, Gridding, Random Forest, Tomicus destruens

Abstract

The increasing negative effects of climate change and the emergence of invasive species in forests around the world require the development of innovative methods to monitor and quantitatively measure the health status of woodlands. These effects are especially notable in the Mediterranean area, where the decline of stands due to recurrent droughts has increased the damage caused by secondary pests whose populations would otherwise be in balance. Remote sensing technologies allow us to work on large surfaces with reasonable precision. In particular, new spectral indices obtained from high-resolution hyperspectral and thermal images have been shown to be good predictors for the early detection of physiological changes related to diseases. In this pilot study developed in a stand of Pinus halepensis in the Comunitat Valenciana, a controlled simulation of a decay is carried out by means of sequential girdling of trees, making a subsequent field monitoring of the caused decay. Through a hyperspectral camera, the spectral information of each of these trees is analyzed in relation to their discoloration and state of observed decay. The proposed methodology allows the detection of affected trees three months before the appearance of visual symptoms, obtaining a precision higher than 0.9 with Random Forest and Support Vector Machine classifiers. The vegetation indices with better results were PRI, VGO1, VGO2, GM1 and OSAVI. This pilot study allows us to think that some of these indices can be used in the early detection of general pine wilt and, therefore, have application in the monitoring of the main threats to European forests, borer pests or quarantine organisms such as Bursaphelenchus xylophilus.

Downloads

Download data is not yet available.

Author Biographies

M.L. Guillen-Climent, Agresta S. Coop.

Agresta S. Coop., C/Duque de Fernán Nuñez,2, Madrid, España.

H. Mas, Centre per a la Investigació i Experimentació Forestal (CIEF)

Centre per a ala Investigació i Experimentació Forestal (CIEF) Vaersa/Laboratori de Sanitat Forestal, Avda. Corts Valencianes, 20, Valencia, España.

A. Fernández-Landa, Agresta S. Coop.

Agresta S. Coop., C/Duque de Fernán Nuñez,2, Madrid, España.

N. Algeet-Abarquero, Agresta S. Coop.

Agresta S. Coop., C/Duque de Fernán Nuñez,2, Madrid, España.

J.L. Tomé, Agresta S. Coop.

Agresta S. Coop., C/Duque de Fernán Nuñez,2, Madrid, España.

References

Abdullah, H., Darvishzadeh, R., Skidmore, A.K., Groen, T.A. Heurich, M. 2018. European spruce bark beetle (Ipstypographus, L.) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation, 64, 199-209. https://doi.org/10.1016/j.jag.2017.09.009

Beck, P.S.A., Zarco-Tejada, P.J., Strobl, P., San Miguel, J. 2015. The feasibility of detecting trees affected by the Pine Wood Nematode using remote sensing, Report EUR 27290 EN. Joint Research Centre - Institute for Environment and Sustainability, European Commission, Scientific and Technical Research series - ISSN 1831-9424.

Berger, C., Laurent, F. 2019. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Protection, 124, 104831. https://doi.org/10.1016/j.cropro.2019.05.025

Breiman, L. 2001. Random forests. Machine Learning. 5, 5-32. https://doi.org/10.1023/A:1010933404324

Calderón, R., Navas-Cortés, J.A., Lucena, C., Zarco- Tejada, P.J. 2013. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231- 245. https://doi.org/10.1016/j.rse.2013.07.031

Calderón, R., Navas-Cortés, J.A., Zarco-Tejada, P.J. 2015. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas, Remote Sensing, 7, 5584-5610. https://doi.org/10.3390/rs70505584

Carter, G.A., Knapp, A.K. 2001. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88, 677-684. https://doi.org/10.2307/2657068

Delegido, J., Verrelst, J., Alonso, L., Moreno, J. 2011. Evaluation of Sentinel-2 red edge bands for empirical estimation of green LAI and chorophyll content. Sensors, 11(7), 7063-7081. https://doi.org/10.3390/s110707063

Dimitri, L., Gebauer, U., Lösekrug, R., Vaupel, O. 1992. Influence of mass trapping on the population dynamic and damage-effect of bark beetles 1, 2. Journal of Applied Entomology, 114(1-5), 103-109. https://doi.org/10.1111/j.1439-0418.1992.tb01102.x

Domec, J.C., Pruyn, M.L. 2008. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees. Tree Physiology, 28(10), 1493-1504. https://doi.org/10.1093/treephys/28.10.1493

Ferretti, M. 1997. Forest health assessment and monitoring. Issues for consideration. Environmental Monitoring and Assessment, 48, 45-72. https://doi.org/10.1023/A:1005748702893

Gamon, J.A., Peñuelas, J., Field, C.B. 1992. A narrow-wave band spectral index thattracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35-44. https://doi.org/10.1016/0034-4257(92)90059-S

Genuer, R., Poggi, J.M., Tuleau-Malot, C. 2010. Variable Selection using Random Forests. Patter Recognition Letters, 31(14), 2225-2236. https://doi.org/10.1016/j.patrec.2010.03.014

Genuer, R., Poggi, J.M., Tuleau-Malot, C. 2015. VSURF: An R package for variable selection using Random Forests, The R Journal, 7(2), 19-33. https://doi.org/10.32614/RJ-2015-018

Gitelson, A.A., Merzlyak, M.N. 1996. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148, 494-500. https://doi.org/10.1016/S0176-1617(96)80284-7

Granke, O., Mues, V. 2010. Sulfur and nitrogen deposition and its trends. In Fischer, R., Lorenz, M., Granke, O. et al. (eds.). The Condition of Forests in Europe, Technical Report of ICP Forests. Work Report of the Institute for World Forestry 2010/1. ICP Forests, Hamburg, 2010 pp. 45-53.

Hernández-Clemente, R., Hornero, A., Mottus, M., Peñuelas, J., González-Dugo, V., Jiménez, J.C., Suárez, L., Alonso, L., Zarco-Tejada, P. 2019. Early diagnosis of vegetation health from high-resolution hyperspectral and thermal imagery: Lessons learned from empirical relationships and radiative transfer modelling. Remote Sensing, 5, 169-183. https://doi.org/10.1007/s40725-019-00096-1

Hilker, T., Coops, N.C., Hall, F.G., Black, T.A., Wulder, M.A., Nesic, Z., Krishnan, P. 2008. Separating physiologically and directionally induced changes in PRI using BRDF models. Remote Sensing of Environment, 112(6), 2777-2788. https://doi.org/10.1016/j.rse.2008.01.011

Hódar, J.A., Zamora, R., Cayuela, L. 2012. Cambio climáticos y plagas: algo más que el clima. Ecosistemas, 21(3), 73-38. https://doi.org/10.7818/ECOS.2012.21-3.09

Johnsen, K., Maier, C., Sanchez, F., Anderson, P., Butnor, J., Waring, R., Linder, S. 2007. Physiological girdling of pine trees via phloem chilling: proof of concept. Plant, Cell & Environment, 30(1), 128-134. https://doi.org/10.1111/j.13653040.2006.01610.x

López, R., Brossa, R., Gil, L., Pita, P. 2015. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling. Frontiers in plant science, 6, 285. https://doi.org/10.3389/fpls.2015.00285

Liu, J., Chen, H., Wang, J., Chen, X., Yang, Z., Liang, J. 2019. Photosynthetic traits and antioxidative defense responses of Pinus yunnanensis after joint attack by bark beetles Tomicus yunnanensis and T. minor. Journal of Forestry Research, 30(6), 2031- 2038. https://doi.org/10.1007/s11676-018-0844-x

Michel, A., Seidling, W. 2016. Forest Condition in Europe 2016 Technical Report of ICP Forests. Report under the UNECE Convention on Long- Range Transboundary Air Pollution (CLRTAP).

PATFOR, Generalitat Valenciana. 2013. Plan de Acción Territorial Forestal de la Comunitat Valenciana (PATFOR). 582 pp. Web consultada el 04 de febrero de 2020.

Poblete, T., Camino, C., Beck, P.S.A., Hornero, A., Kattenborn, T., Saponari, M., Boscia, D., Navas- Cortes, J.A., Zarco-Tejada, P.J. 2020.Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: assessing bandset reduction performance from hyperspectral analysis, ISPRS Journal of Photogrammetry and Remote Sensing, 162, 27-40. https://doi.org/10.1016/j.isprsjprs.2020.02.010

Resco de Dios, V., Fischer, C., Colinas, C. 2007. Climate Change Effects on Mediterranean Forests and Preventive Measures, New Forests, 33, 29-40. https://doi.org/10.1007/s11056-006-9011-x

Rondeaux, G., Steven, M., Baret, F. 1996. Optimization of Soil Adjusted Vegetation indices. Remote Sensing of Environment, 55(2), 95-107. https://doi.org/10.1016/0034-4257(95)00186-7

SSF - DGDRyPF. 2012. Red de Seguimiento a Gran Escala de Daños en los Montes (Red de Nivel II) Manual de campo. Ministerio de Agricultura, Alimentación y Medio Ambiente.

Stone, E.L. 1974. The communal root system of red pine: growth of girdled trees. Forest Science, 20(4), 294-305.

Stone, C., Mohammed, C. 2017. Application of remote sensing technologies for assessing planted forests damaged by insect pests and fungal pathogens: a review. Current Forestry Reports, 3(2), 75-92. https://doi.org/10.1007/s40725-017-0056-1

Suárez, L., Zarco-Tejada, P.J., Sepulcre-Cantó, G., Pérez-Priego, O., Miller, J.R., Jiménez-Muñoz, J.C., Sobrino, J. 2008. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sensing of Environment, 112(2), 560-575. https://doi.org/10.1016/j.rse.2007.05.009

Trenberth, K.E., Dai, A., van der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., Sheffield, J., 2014. Global warming and changes in drought. Nat. Clim. Chang., 4,17-22. https://doi.org/10.1038/nclimate2067

Vega, F.E., Hofstetter, R.W. Eds. 2014. Bark beetles: biology and ecology of native and invasive species. Academic Press.

Vogelmann, T.C. 1993. Plant Tissue Optics. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 44, 231-251. https://doi.org/10.1146/annurev.pp.44.060193.001311

Zarco-Tejada, P.J., Miller. J.R. 1999. Land Cover Mapping at BOREAS using red edge spectral parameters from CASI imagery, Journal of Geophysical Research, 104(22), 27921-27933. https://doi.org/10.1029/1999JD900161

Zarco-Tejada, P.J., González-Dugo, M.V., Fereres, E. 2016. Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sens. Environ. 179, 89-103. https://doi.org/10.1016/j.rse.2016.03.024

Published

2020-06-23

Issue

Section

Research articles