Capability assessment of the SEVIRI/MSG GPP product for the detection of areas affected by water stress

B. Martínez

https://orcid.org/0000-0002-6354-9899

Spain

Universitat de València

UV-ERS, Departament de Física de la Terra i Termodinàmica

Sergio Sánchez-Ruiz

Spain

Universitat de València

M. Campos-Taberner

Spain

Universitat de València

F.J. García-Haro

Spain

Universitat de València

M.A. Gilabert

Spain

Universitat de València

|

Accepted: 2020-05-28

|

Published: 2020-06-23

DOI: https://doi.org/10.4995/raet.2020.13285
Funding Data

Downloads

Keywords:

MSG, MGPP, Monteith, hot spots, detection, water stress

Supporting agencies:

Proyectos LSA SAF (EUMETSAT) y ESCENARIOS (CGL2012– 35831)

Abstract:

This study aims to introduce a completely new and recently launched 10-day GPP product based on data from the geostationary MSG satellite (MGPP LSA-411) and to assess its capability to detect areas affected by water stress (hot spots). The GPP product is based on Monteith’s concept, which models GPP as the product of the incoming photosynthetically active radiation (PAR), the fractional absorption of that flux (fAPAR) and a lightuse efficiency factor (ε). Preliminary results on the use of the MGPP product in the assessment of ecosystem response to rainfall deficit events are presented in this work for a short period of three years. The robustness of this product is evaluated at both site and regional scales across the MSG disk using eddy covariance (EC) GPP measurements and Earth Observing (EO)-based GPP products, respectively. The EO-based products belong to the 8-day MOD17A2H v6 at 500 m and the 10-day GDMP at 1 km. The results reveal the MGPP product, derived entirely from MSG (EUMETSAT) products, as an efficient alternative to detect and characterize areas under water scarcity by means of a coefficient of water stress.

Show more Show less

References:

Anyamba, A., Glennie, E., Small, J. 2018. Teleconnections and Interannual Transitions as Observed in African Vegetation: 2015-2017. Remote Sensing, 10, 1038. https://doi.org/10.3390/rs10071038

Bahta, Y.T., Jordaan, A., Muyambo, F. 2016. Communal Farmers' perception of drought in South Africa: policy implication for drought risk reduction. International Journal of Disaster Risk Reduction, 20, 39-50. https://doi.org/10.1016/j.ijdrr.2016.10.007

Bartholome, E. Belward, A.S. 2005. GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9), 1959-1977. https://doi.org/10.1080/01431160412331291297

Bojinski, S., Verstraete, M., Peterson, T.C., Richter, C., Simmons, A., Zemp, M. 2014. The concept of essential climate variables in support of climate research, applications, and policy. American Meteorologial Society, 95(9), 1431-1443. https://doi.org/10.1175/BAMS-D-13-00047.1

CGLOPS1. 2018. Copernicus Global Land Operations 'Vegetation and Energy' Product User Manual for Dry Matter Productivity (DMP) and Gross Dry Matter Productivity (GDMP). Collection 1 km, version 2- CGLOPS1_PUM_DMP1km-V2, February 2018, 47 pp.

Chamaillé-Jammes, S. Fritz, H. 2009. Precipitation-NDVI relationships in eastern and southern African savannas vary along a precipitation gradient. International Journal of Remote Sensing, 30(13), 3409-3422. https://doi.org/10.1080/01431160802562206

Flaming, G.M. 2004. Measurement of global precipitation. In: International Geoscience and Remote Sensing Symposium. 9, Anchorage, AK, EUA.

Fuster, B., Sánchez-Zapero, J., Camacho, F., García- Haro, F.J., Campos-Taberner, M. 2017. Validation of the Climate Data Record of EUMETSAT LSA SAF SEVIRI/MSG LAI, FAPAR and FVC products. Proceedings of the V RAQRS conference, Torrent, September 2017. pp. 191-196.

Garbulsky, M.F., Peñuelas, J., Papale, D., Ardo, J., Goulden, M.L., Kiely, G., et al. 2010. Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Global Ecology and Biogeography, 19, 253-267. https://doi.org/10.1111/j.1466-8238.2009.00504.x

García-Haro, F.J., Campos-Taberner, M., Sabater, N., Belda, F., Moreno, A., Gilabert, M.A., Martínez, B., Pérez-Hoyos, A., Meliá, J. 2014. Vulnerabilidad de la vegetación a la sequía en España. Revista de Teledetección, 42, 29-37. https://doi.org/10.4995/raet.2014.2283

García-Haro, F.J., Campos-Taberner, M., Muñoz- Mari, J., Laparra, V., Camacho, F., Sánchez- Zapero, J., Camps-Valls, G. 2018. Derivation of global vegetation biophysical parameters from EUMETSAT polar system. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 57-74. https://doi.org/10.1016/j.isprsjprs.2018.03.005

García-Haro, F.J., Camacho, F., Martínez, B., Campos- Taberner, M., Fuster, B., Sánchez-Zapero, J., Gilabert, M.A. 2019. Climate Data Records of Vegetation Variables from Geostationary SEVIRI/MSG Data: Products, Algorithms and Applications. Remote Sensing, 11, 2103. https://doi.org/10.3390/rs11182103

Gilabert, M.A., Moreno, A., Maselli, F., Martínez, B., Chiesi, M., Sánchez-Ruíz, S., et al. 2015. Daily GPP estimates in Mediterranean ecosystems by combining remote sensing and meteorological data. ISPRS Journal of Photogrammetry and Remote Sensing, 102, 184- 197. https://doi.org/10.1016/j.isprsjprs.2015.01.017

Jones, L.A., Kimball, J.S., Reichle, R.H., Madani, N., Glassy, J., Ardizzone, J.V., et al. 2017. The SMAP level 4 carbon product for monitoring ecosystem land-atmosphere CO2 exchange. IEEE Transactions on Geoscience and Remote Sensing, 55(11), 6517- 6532. https://doi.org/10.1109/TGRS.2017.2729343

Kummerowa, C., Simpson, J., Thielea, O., Barnesa, W., Changa, A.T.C., Stockera, E., 2000. The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit. Journal of Applied Meteorology, 39, 1965-1982.

Liu, Z., Ostrenga, D., Teng, W., Kempler, S. 2012. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications. Bulletin of the American Meteorological Society, 93, 1317-1325. https://doi.org/10.1175/BAMS-D-11-00152.1

Liu, N., Harper, R. J., Dell, B., Liu, S., Yu, Z. 2017. Vegetation dynamics and rainfall sensitivity for different vegetation types of the Australian continent in the dry period 2002-2010. International Journal of Remote Sensing, 17, 2761-2782. https://doi.org/10.1002/eco.1811

Malo, A.R Nicholson, S.E. 1990. A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index. Journal of Arid Environments, 19, 1-24. https://doi.org/10.1016/S0140-1963(18)30825-5

Martínez, B., Sánchez-Ruiz, S., Gilabert, M.A., Moreno, A., Taberner, M.C., García-Haro, F.J., et al. 2018. Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products. International Journal of Applied Earth Observation and Geoinformation, 65, 124-136. https://doi.org/10.1016/j.jag.2017.10.011

Martínez, B., Gilabert, M.A., Sánchez-Ruiz, S., Taberner, M.C., García-Haro, F.J. 2020. Evaluation of the LSA-SAF gross primary production product derived from SEVIRI/MSG data (MGPP). ISPRS Journal of Photogrammetry and Remote Sensing, 159, 220-236. https://doi.org/10.1016/j.isprsjprs.2019.11.010

McKee, T.B., Doesken, N.J., Kleist, K. 1993. The relationship of drought frequency and duration to time scale. In: Proceedings of the Eighth Conference on Applied Climatology, Anaheim, California, 17- 22 January 1993. Boston, American Meteorological Society, 179-184.

Monteith, J. L. 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747-766. https://doi.org/10.2307/2401901

Running, S.W., Zhao, M. 2015. Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm. User's Guide. Version 3.0 For Collection 6.

Sánchez-Ruiz, S., Moreno, A., Piles, M., Maselli, F., Carrara, A., Running, S., Gilabert, M.A. 2017. Quantifying water stress effect on daily light use efficiency in Mediterranean ecosystems using satellite data. International Journal of digital Earth, 10(6), 623-638. https://doi.org/10.1080/17538947.2016.1247301

Simpson, J., Adler, R., North, G.A. 1988. Proposed tropical rainfall measuring mission (TRMM) satellite. Bulletin of the American Meteorological Society, 69(3), 278-295. https://doi.org/10.1175/1520- 0477(1988)069%3C0278:APTRMM%3E2.0.CO;2

Vicente-Serrano, S.M., Azorín-Molina, C., Peña- Gallardo, M., Tomas-Burguera, M., Domínguez- Castro, F., et al. 2015. A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015. Natural Hazards and Earth System Sciences, 19, 1189- 1213. https://doi.org/10.5194/nhess-19-1189-2019

Zhang, Y., Yu, G., Yang, J., Wimberly, M.C., Zhang, X., Tao, J., et al. 2014. Climate driven global changes in carbon use efficiency. Global Ecology and Biogeography, 23, 144-155. https://doi.org/10.1111/geb.12086

Zhao, M., Running, S.W., Heinsch, F.A., Nemani, R.R. 2011. MODIS derived terrestrial primary production. Land Remote Sensing and Global Environmental Change. Springer, New York, pp. 635-660. https://doi.org/10.1007/978-1-4419-6749-7_28

Show more Show less