The 2017 Land Use/Land Cover Map of Catalonia based on Sentinel-2 images and auxiliary data

O. González-Guerrero, X. Pons


This paper details the process of generating the 2017 Land Use/Land Cover Map of Catalonia (MUCSC) using automatic classification of satellite imagery and auxiliary cartographic and remote sensing data. A total of 60 images (6 dates for each of the 10 tiles covering Catalonia) captured by the Sentininel-2A and Sentinel-2B satellites were used. These images as well as texture variables, terrain models derived from lidar processing, and vegetation and wetness indices were classified using the k-Nearest Neighbor algorithm (kNN) to obtain a map with 25 categories. The categories related to urbanized areas (urban areas, urbanizations and industrial zones/ commercial areas), road infrastructures and burned areas were edited using official cartographic datasets of the Catalan Government [Generalitat]. The results have an overall accuracy greater than 98 %, which was evaluated with a set of more than 8.6 million independent test pixels. This work represents an important milestone in terms of the computational effort it involves due to the territorial extension (32 000 km2), the spatial detail of between 2 and 20 m, the use of up to 58 variables, the relative completeness of the legend and the level of success achieved. The MUCSC 2017, which is part of a 30-year quinquennial series beginning in 1987, can be downloaded in different formats (also in MMZX: new ISO 19165-2) and at resolutions of 10 m and 30 m pixel side from the Ministry of Territory and Sustainability website of the Catalan Government.


Land Use/Land Cover; LULC; Sentinel-2; Catalonia

Full Text:



Cea, C., Cristóbal, J., Pons, X. 2007. An improved methodology to map snow cover by means of Landsat and MODIS imagery. En: Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. Barcelona. IEEE International, 4217-4220. DOI

Elvidge, C.D., Sutton, P.C., Wagner, T.W., Ryznar, R., Goetz, S.J., Smith, A.J., Jantz, C., Seto, K., Imhoff, M.L., Vogelmann, J., wang, Y.Q., Milesi, C., Nemani, R. 2004. Urbanization. En: Gutman, G. et al. (ed.). Land change science: Observing, monitoring, and understanding trajectories of change on the earth's surface. Dordrecht, Países Bajos: Kluwer Academic Publishers, pp. 315-328.

ESA. 2015. Sentinel-2 User Handbook. Recuperado de Sentinel-2_User_Handbook Último acceso: 4 de febrero, 2020.

González-Guerrero, O., Pons-Fernández, X., Bassols- Morey, R., Camps-Fernandez, F.J. 2019. Dinàmica de les superfícies de conreu a Catalunya mitjançant Teledetecció en el període 1987-2012. Quaderns Agraris, 46, 59-91.

Hansen, M.C., Loveland, T.R. 2012. A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66-74.

ICC. 1992. Mapa d'usos del sòl de Catalunya. Institut Cartogràfic de Catalunya. Barcelona. 118 p.

ICGC (2017). Datos lidar. Institut Cartogràfic i Geològic de Catalunya. Recuperado de es/Descargas/Elevaciones/Datos-lidar Último acceso: 1 de mayo, 2020.

Loveland, T.R., Dwyer, J.L. 2012. Landsat: Building a strong future. Remote Sensing of Environment, 122, 22-29.

Moré, G., Pons, X. 2007. Influencia del número de imágenes en la calidad de la cartografía detallada de vegetación forestal. Revista de Teledetección, 28, 61- 68. Recuperado de revista28/7-111_More_revisado.pdf Último acceso: 1 de mayo, 2020.

Padial, M., Vidal-Macua, J.J., Serra, P., Ninyerola, M., Pons, X. 2019. Aplicación de filtros multicriterio basados en NDVI para la extracción de áreas de entrenamiento desde la base de datos SIOSE. Ruiz L.A., Estornell J., Calle A., Antuña-Sánchez J.C. (eds) Teledetección: hacia una visión global del cambio climático, pp. 311-314. ISBN: 978- 84-1320-038-5. Libro de actas XVIII Congreso de la Asociación Española de Teledetección, 24 - 27 Septiembre, Valladolid (Spain).

Padró, J.C., Pons, X., Aragonés, D., Díaz-Delgado, R., García, D., Bustamante, J., Pesquer, L., Domingo- Marimon, C., González-Guerrero, O., Cristóbal, J., Doktor, D., Lange, M. 2017. Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy. Remote Sensing, 9(12), 1319.

Padró, J.C., Muñoz, F.J., Ávila, L.A., Pesquer, L., Pons, X. 2018. Radiometric Correction of Landsat-8 and Sentinel-2A Scenes Using Drone Imagery in Synergy with Field Spectroradiometry. Remote Sensing, 10(11), 1687.

Pons, X. 2004. MiraMon. Sistema de Información Geográfica y software de Teledetección. Centre de Recerca Ecològica i Aplicacions Forestals, CREAF. Bellaterra. ISBN: 84-931323-4-9. Recuperado de Último acceso: 1 de mayo, 2020.

Pons, X., Ninyerola, M. 2008. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. International Journal of Climatology, 28(13), 1821-1834.

Pons, X., Pesquer, L., Cristóbal, J., González- Guerrero, O. 2014. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation, 33, 243-254.

Pons X., Masó J. 2016. A comprehensive open package format for preservation and distribution of geospatial data and metadata. Computers & Geosciences, 97, 89-97.

Townshend, J.R., Masek, J.G., Huang, C., Vermote, E.F., Gao, F., Channan, S., Sexton, J.O., Feng, M., Narasimhan, R., Kim, D., Song, K., Song, D., Song, X. P., Noojipady, P., Tan, B., Hansen, M.C., Li, M., Wolfe, R.E. 2012. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. International Journal of Digital Earth, 5(5), 373-397.

Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S.N., Helder, D., Helmer, E., Nemani, R., Oreopoulos, L., Schott, J., Thenkabail, P.S., Vermote, E.F., Vogelmann, J., Wulder, M.A., Wynne, R. 2008. Free access to Landsat imagery. Science, 320(5879), 1011.

Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., Woodcock, C.E. 2012. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2-10.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Deep learning para la clasificación de usos de suelo agrícola con Sentinel-2
M. Campos-Taberner, F.J. García-Haro, B. Martínez, M.A. Gilabert
Revista de Teledetección  issue: 56  first page: 35  year: 2020  
doi: 10.4995/raet.2020.13337


This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953