Generation of change data of land cover in the Bogotá savannah using time series with Landsat images and MODIS-Landsat synthetic images between 2007 and 2013

Authors

DOI:

https://doi.org/10.4995/raet.2019.12280

Keywords:

synthetic images, MODIS, Landsat, time series, land cover

Abstract

Currently, new tools have been implemented that merge high-resolution temporal and spatial images for detection of change land cover. With the purpose of evaluate this type of techniques we generated a time series with Landsat satellite imagery and a time series with simulated images Landsat-MODIS, with the purpose of determining which of the two methods provides the best results in the change quantification in the Sabana of Bogota between 2007 and 2013. The processing consists of (i) Time Series with images Landsat trough BFAST, (ii) getting synthetic images through the ESTARFM algorithm; (iii) time series through BFAST with the use of simulated images. In the time series process, the series incorporating synthetic images and images corrected by the gaps generated the best accuracy indexes (global accuracy: 88.16% y Kappa: 76.52%) with respect to the series that incorporated only the images Landsat (global accuracy: 83% y Kappa: 65.18%); it indicates that densification of time series allow to get the best results in the quantification of changes and dynamics of land cover. The methodology applied represents an advance about generation of synthetic images and monitoring and detection of changes in land cover through time series. This is one of the first studies realized in the country that includes this type of process.

Downloads

Download data is not yet available.

Author Biographies

M.A. Zaraza-Aguilera, Universidad Distrital Francisco Jose de Caldas

Ingeniería Catastral y Geodesia

L.M. Manrique-Chacón, Universidad Distrital Francisco José de Caldas

Ingeniería Catastral y Geodesia

References

Chen, J., Zhu, X., Vogelmann, J.E., Gao, F., Jin, S. 2011. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sensing of Environment, 115(4), 1053-1064. https://doi.org/10.1016/j.rse.2010.12.010

Corporacion Cactus. 2014. Más cemento menos alimento. II informe sobre el derecho a la Alimentación en la Sabana (N.o II; p. 130). Recuperado de Corporacion Cactus website: http://www.cactus.org.co/paginas/publicaciones/ SERIE%20CAMINANDO%20LA%20SABANA/ Mas%20cemento,%20Menos%20alimento.%20 Informe%20digital.pdf

DeVries, B., Verbesselt, J., Kooistra, L., Herold, M. 2015. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sensing of Environment, 161, 107-121. https://doi.org/10.1016/j.rse.2015.02.012

Dutrieux, L.P., Verbesselt, J., Kooistra, L., Herold, M. 2015. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia. ISPRS Journal of Photogrammetry and Remote Sensing, 107, 112-125. https://doi.org/10.1016/j.isprsjprs.2015.03.015

Gao, F., Masek, J., Schwaller, M., Hall, F. 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2207-2218. https://doi.org/10.1109/TGRS.2006.872081

Gujarati, D.N., Porter, D.C. 2010. Econometría (Quinta). Mexico, D.F.: McGraw-Hill/Interamericana.

ICANH. 2016. Sabana de Bogotá—Instituto Colombiano de Antropología e Historia—ICANH. Recuperado 28 de noviembre de 2016, de Instituto Colombiano de Antropología e Historia website: http://www.icanh.gov.co/?idcategoria=4408

IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales. 2012. Mapa de Coberturas de la Tierra Metodologia Corine Land Cover Adaptada para Colombia Escala 1:100.000 Periodo 2005- 2009. Recuperado de http://sig.anla.gov.co:8083/ resources/DESCARGA_SIAC/IDEAM/MG_E_ CoberturaTierra%202005_2009%20v1.pdf

Justice, C.O., Townshend, J.R.G., Vermote, E. F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P., Morisette, J.T. 2002. An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83(1–2), 3-15. https://doi.org/10.1016/S0034-4257(02)00084-6

Molano, J., Batista, J. 1967. Calendario Climatologico Aeronautico Colombiano. Sociedad Geográfica de Colombia, XXV. Recuperado de http://www. sogeocol.edu.co/documentos/096_calen_climat.pdf

Montañez-Gómez, G., Arcila-Niño, O., PachecoGiraldo, J.C., Hernández, Y., Gracia, J., Lancheros Murillo, H. 1994. Hacia donde va la Sabana de Bogotá?: Modernización, conflicto, ambiente y sociedad. Universidad Nacional de Colombia, Centro de Estudios Sociales: SENA, Bogotá.

Morton, D.C., Nagol, J., Carabajal, C.C., Rosette, J., Palace, M., Cook, B.D., … North, P.R.J. 2014. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature, 5067487, 221-224. https://doi.org/10.1038/ nature13006

Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L. 1995. The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481-486. https://doi.org/10.1109/36.377948

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015

Renza-Torres, D. 2010. Implementacion y evaluacion de un filtro digital para la transformada wavelet compleja de doble arbol (dt-cwt) aplicada a fusion de imagenes bidimensionales en escala de gris (Tesis de Maestría). Universidad Nacional de Colombia, Bogota.

Soto-Berelov, M., Hislop, S. 2016. Approaches used for pixel based time series analysis of Landsat data. Recuperado de http://www.crcsi.com.au/assets/ Program-4/Agriculture/4.104-LandFor/Project4- 104-LandFor-LitRevTimeSeriesV1-1.pdf

SRP. 2012. Assigning Categories to the RPS Score. Recuperado de http://nj.gov/dep/srp/srra/rps/docs/ rps_jenks_breaks.pdf

USGS. 2015. What is CFMask? Recuperado 3 de febrero de 2017, de Landsat Missions website: https://landsat.usgs.gov/what-cfmask

Vaiopoulos, A. 2013. Hyperspectral Image Index Analysis—File Exchange—MATLAB Central. Recuperado 8 de diciembre de 2016, de http://www. mathworks.com/matlabcentral/fileexchange/32637- hyperspectral-image-index-analysis

Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D. 2010. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1), 106-115. https://doi.org/10.1016/j.rse.2009.08.014

Vermote, E.F., Kotchenova, S., Ray, J.P. 2011. MODIS Surface Reflectance User’s Guide. Recuperado de http://modis-sr.ltdri.org/guide/MOD09_UserGuide_ v1_3.pdf

Wulder, M.A., White, J.C., Goward, S.N., Masek, J.G., Irons, J.R., Herold, M., … Woodcock, C.E. 2008. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, 112(3), 955-969. https://doi.org/10.1016/j.rse.2007.07.004

Xin, Q., Olofsson, P., Zhu, Z., Tan, B., Woodcock, C. E. 2013. Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sensing of Environment, 135, 234-247. https://doi.org/10.1016/j.rse.2013.04.002

Zhu, X., Chen, J., Gao, F., Chen, X., Masek, J.G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11), 2610- 2623. https://doi.org/10.1016/j.rse.2010.05.032

Published

2019-12-23

Issue

Section

Research articles