Estimation of the vertical distribution of the fine canopy fuel in Pinus sylvestris stands using low density LiDAR data


  • L.A. Fidalgo-González Universidade de Santiago de Compostela
  • S. Arellano-Pérez Universidade de Santiago de Compostela
  • J.G. Álvarez-González Universidade de Santiago de Compostela
  • F. Castedo-Dorado Universidad de León
  • A.D. Ruiz-González Universidade de Santiago de Compostela
  • E. González-Ferreiro Universidad de León



canopy fuel load, canopy base height, canopy bulk density, airborne laser scanning, crown fires


Canopy fuel load, canopy bulk density and canopy base height are structural variables used to predict crown fire initiation and spread. Direct measurement of these variables is not functional, and they are usually estimated indirectly by modelling. Advances in fire behaviour modelling require accurate and landscape scale estimates of the complete vertical distribution of canopy fuels. The goal of the present study is to model the vertical profile of available canopy fuels in Scots pine stands by using data from the Spanish national forest inventory and low-density LiDAR data (0.5 first returns  m–2) provided by Spanish PNOA project (Plan Nacional de Ortofotografía Aérea). In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, a system of models was fitted to relate the canopy variables to Lidar-derived metrics. Models were fitted simultaneously to compensate the effects of the inherent cross-model correlation between errors. Heteroscedasticity was also analyzed, but correction in the fitting process was not necessary. The estimated canopy fuel load profiles from LiDAR-derived metrics explained 41% of the variation in canopy fuel load in the analysed plots. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.


Download data is not yet available.

Author Biographies

L.A. Fidalgo-González, Universidade de Santiago de Compostela

Unidade de Xestión Forestal Sostible GI-1837-UXFS. Escola Politécnica Superior de Enxeñaría, Campus Terra

S. Arellano-Pérez, Universidade de Santiago de Compostela

Unidade de Xestión Forestal Sostible GI-1837-UXFS.Escola Politécnica Superior de Enxeñaría, Campus Terra

J.G. Álvarez-González, Universidade de Santiago de Compostela

Unidade de Xestión Forestal Sostible GI-1837-UXFS.Escola Politécnica Superior de Enxeñaría, Campus Terra

F. Castedo-Dorado, Universidad de León

Grupo de Investigación en Geomática e Ingeniería CartográficaGI-202-GEOINCA, Campus de Ponferrada

A.D. Ruiz-González, Universidade de Santiago de Compostela

Unidade de Xestión Forestal Sostible GI-1837-UXFS.Escola Politécnica Superior de Enxeñaría, Campus Terra

E. González-Ferreiro, Universidad de León

Grupo de Investigación en Geomática e Ingeniería CartográficaGI-202-GEOINCA, Campus de Ponferrada


Alberdi, I., Vallejo, R., Álvarez-González, J.G, Condés, S., González-Ferreiro, E., Guerrero, S., Hernández, L., Martínez-Jauregui, M., Montes, F., Oliveira, N., Pasalodos-Tato, M., Robla, E., Ruiz-González, A.D., Sánchez-González, M., Sandoval, V., San Miguel, A., Sixto, H., Cañellas, I. 2017. The multiobjective Spanish National Forest Inventory. Forest systems, 26(2), e04S. fs/2017262-10577

Alexander, M.E., Cruz, M.G. 2011. Crown fire dynamics in conifer forests. USDA Forest Service, Pacific Northwest Research Station General Technical Report PNW-GTR-854.

Andersen, H.E., McGaughey, R.J., Reutebuch, S.E. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94, 441-449.

Arellano-Pérez, S., Vega, J.A., Ruiz-González, A.D., Arellano, A., Álvarez-González, J.G., Vega, D.J., Pérez, E. 2017. Foto-guía de combustibles forestales de Galicia y comportamiento del fuego asociado. Andavira editora. Santiago de Compostela.

Arias-Rodil, M., Diéguez-Aranda, U., ÁlvarezGonzález, J.G., Pérez-Cruzado, C., CastedoDorado, F., González-Ferreiro, E. 2018. Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data. Annals of forest science, 75(2), 36.

Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., Hall, J.S., Van Breugel, M. 2012. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia, 168, 1147-1160.

Barreiro-Fernández, L., Buján, S., Miranda, D., Diéguez-Aranda, U., González-Ferreiro, E. 2016. Accuracy assessment of LiDAR-derived digital elevation models in a rural landscape with complex terrain. Journal of Applied Remote Sensing, 10(1), 016014.

Corona, P., Cartisano, R., Salvati, R., Chirici, G., Floris, A., Di Martino, P., Marchetti, M., Scrinzi, G., Clementel, F., Travaglini, D., Torresan, C. 2012. Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy. European Journal of Remote Sensing, 45, 27-37.

Crecente-Campo, F., Pommerening, A., RodríguezSoalleiro, R. 2009. Impacts of thinning on structure, growth and risk of crown fire in a Pinus sylvestris L. plantation in Northern Spain. Forest Ecology and Management, 257(9), 1945-1954.

Crecente-Campo, F., Álvarez-González, J.G., CastedoDorado, F., Gómez-García, E., Diéguez-Aranda, U. 2013. Development of crown profile models for Pinus pinaster Ait. and Pinus sylvestris L. in northwestern Spain. Forestry, 86, 481-491.

Da Ponte, E., Costafreda-Aumedes, S., Vega-Garcia, C. 2019. Lessonslearned from arson wildfire incidence in reforestations and natural stands in Spain. Forests, 10(3), 229.

Diéguez-Aranda, U., Rojo-Alboreca, A., CastedoDorado, F., Álvarez-González, J.G., Barrio-Anta, M., Crecente-Campo, F., et al., 2009. Herramientas selvícolas para la gestión forestal sostenible en Galicia. Dirección Xeral de Montes, Consellería do Medio Rural, Xunta de Galicia. Santiago de Compostela.

Domingo, D., Lamelas-Gracia, M.T., MontealegreGracia, A.L., de la Riva-Fernández, J. 2017. Comparison of regression models to estimate biomass losses and CO2 emissions using low-density airborne laser scanning data in a burnt Aleppo pine forest. European Journal of Remote Sensing, 50(1), 384-396.

Domingo, D., Lamelas-Gracia, M.T., MontealegreGracia, A.L., García-Martín, A., de la Riva, J. 2018. Estimation of total biomass in Aleppo pine forest stands applying parametric and nonparametric methods to low-density airborne laser scanning data. Forests, 9(4), 158.

Domingo, D., Alonso, R., Lamelas, M.T., Montealegre, A.L., Rodríguez, F., de la Riva, J. 2019. Temporal transferability of pine forest attributes modeling using low-density airborne laser scanning data. Remote Sensing, 11(3), 261.

Erdody, T.L., Moskal, L.M. 2010. Fusion of LiDAR imagery for estimating forest canopy fuels. Remote Sensing of Environment, 114, 725-737.

Estornell, J., Ruiz, L.A., Velázquez-Marti, B. 2011a. Study of shrub cover and height using LiDAR data in a Mediterranean area. Forest Science, 57(3), 171- 179.

Estornell, J., Ruiz, L. A., Velázquez-Martí, B., FernándezSarría, A. 2011b. Estimation of shrub biomass by airborne LiDAR data in small forest stands. Forest Ecology and Management, 262(9), 1697-1703.

Estornell, J., Ruiz, L.A., Hermosilla, T., VelazquezMarti, B. 2012. Assessment of factors affecting shrub volume estimations using airborne discretereturn LiDAR data in Mediterranean areas. Journal of Applied Remote Sensing, 6(1), 063544.

García, M., Riaño, D., Chuvieco, E., Danson, F.M. 2010. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114, 816-830.

García-Gutiérrez, J., González-Ferreiro, E., RiquelmeSantos, J.C., Miranda, D., Diéguez-Aranda, U., Navarro-Cerrillo R.M. 2014. Evolutionary feature selection to estimate forest stand variables using LiDAR. International Journal of Applied Earth Observation and Geoinformation, 26, 119-131.

Gobakken, T., Næsset, E. 2009. Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research, 39, 1036-1052.

González-Ferreiro, E., Diéguez-Aranda, U., Miranda, D. 2012. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry, 85, 281-292.

González-Ferreiro, E., Diéguez-Aranda, U., CrecenteCampo, F., Barreiro-Fernández, L., Miranda, D., Castedo-Dorado, F. 2014. Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data. International Journal of Wildland Fire, 23(3), 350-362.

González-Ferreiro, E., Arellano-Pérez. S., CastedoDorado, F., Hevia, A., Vega, J.A., VegaNieva, D., Álvarez-González, J.G., RuizGonzález, A.D. 2017. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data. PLoS One, 12(4), e0176114.

González-Olabarria, J.R., Rodríguez, F., FernándezLanda, A., Mola-Yudego, B. 2012. Mapping fire risk in the model forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 282, 149-156.

Greaves, H.E., Vierling, L.A., Eitel, J.U., Boelman, N.T., Magney, T.S., Prager, C.M., Griffin, K.L. 2016. High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery. Remote sensing of environment, 184, 361-373.

Guerra-Hernández, J., Tomé, M., González-Ferreiro, E. 2016a. Using low density LiDAR data to map Mediterranean forest characteristics by means of an area-based approach and height threshold analysis. Revista de Teledetección, 46, 103-117.

Guerra-Hernández, J., Görgens, E.B., García-Gutiérrez, J., Rodriguez, L.C.E., Tomé, M., GonzálezFerreiro, E. 2016b. Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest. European Journal of Remote Sensing, 49(1), 185-204.

Hall, S., Burke, I., Box, D., Kaufmann, M., Stoker, J. 2005. Estimating stand structure using discrete-return LiDAR: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208, 189-209.

Hawkins,D.M.2004.Theproblemofoverfitting. Journal of Chemical Information and Computer Sciences 44, 1-12.

Holden, Z.A., Morgan, P., Evans, J.S. 2009. A predictive model of burn severity based on 20- year satellite-inferred burn severity data in a large southwestern US wilderness area. Forest Ecology and Management, 258, 2399-2406.

Jiménez, E., Vega, J.A., Fernández-Alonso, J.M., VegaNieva, D., Ortiz, L., López-Serrano, P.M., LópezSánchez, C.A. 2017. Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM+ and national forest inventory data. iForest, 10(3), 590- 596.

Keane, R.E., Burgan, R.E., Wagtendonk, J.V. 2001. Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire, 10, 301-319.

Keyes, C.R., O’Hara, K.L. 2002. Quantifying stand targets for silvicultural prevention of crown fires. Western Journal of Applied Forestry 17, 101-109.

Keyser, T., Smith, F.W. 2010. Influence of crown biomass estimators and distribution on canopy fuel characteristics in ponderosa pine stands of the Black Hills. Forest Science, 56(2), 156-165.

Kraus, K., Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 193-203.

Lekuona Zuazo, I., Montealegre Gracia, A.L., Lamelas Gracia, M.T. 2017. Cartografía de la biomasa aérea total en masas de Pinus radiata D. Don a partir de datos públicos LIDAR-PNOA e inventario forestal nacional. Geofocus, 20, 87-107.

Li, A., Dhakal, S., Glenn, N.F., Spaete, L.P., Shinneman, D.J., Pilliod, D.S., Arkle, R.S., McIlroy, S. 2017. Lidar aboveground vegetation biomass estimates in shrublands: Prediction, uncertainties and application to coarser scales. Remote Sensing, 9(9), 903.

MAPA. 2019. Estadísticas de incendios forestales. Disponible en: desarrollo-rural/estadisticas/Incendios_default.aspx [Último acceso: mayo, 2019].

Martín-García, S., Diéguez-Aranda, U., ÁlvarezGonzález, J. G., Perez-Cruzado, C., Bujan, S., González-Ferreiro, E. 2017. Estimation of timber stocks of Pinus radiata stands at the provincial scale using low resolution LiDAR data. Bosque, 38(1), 17-28.

McGaughey, R., (Ed.) 2016. FUSION/LDV: Software for LiDAR data analysis and visualization, v. 3.60+. USDA Forest Service, Pacific Northwest Research Station. (Seattle, WA). Disponible en: http://forsys. [Último acceso: noviembre, 2018].

Mitchell, J.J., Glenn, N.F., Sankey, T.T., Derryberry, D.R., Anderson, M.O., Hruska, R. C. 2011. Smallfootprint LiDAR estimations of sagebrush canopy characteristics. Photogrammetric Engineering & Remote Sensing, 77(5), 521-530. https://doi. org/10.14358/PERS.77.5.521

Montealegre-Gracia, A.L., Lamelas-Gracia, M.T., Tanase, M., de la Riva, J. 2014. Forest fire severity assessment using ALS data in a Mediterranean environment. Remote Sensing, 6(5), 4240-4265.

Montealegre-Gracia, A.L., Lamelas-Gracia, M.T., de la Riva, J., García-Martín, A., Escribano, F. 2016. Use of low point density ALS data to estimate stand-level structural variables in Mediterranean Aleppo pine forest. Forestry, 89(4), 373-382.

Montealegre-Gracia, A.L., Lamelas-Gracia, M.T., Tanase, M.A., de la Riva, J. 2017. Forest fire severity estimation based on the LiDARPNOA data and the values of the composite burn index. Revista de Teledetección, 49, 1-16.

MARM. 2011. Cuarto Inventario Forestal Nacional. Comunidad Autónoma de Galicia. Ed. Dirección General del Medio Natural y Política Forestal.

Næsset, E. 2004. Estimation of above-and below-ground biomass in boreal forest ecosystems. International Archives of Photogrammetry, Remote Sensing Spatial and Information Sciences, 36, 145-148.

Næsset, E., Økland, T. 2002. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment, 79, 105-115.

Pasalodos-Tato, M., Pukkala, T. 2007. Optimising the management of even-aged Pinus sylvestris L. stands in Galicia, north-western Spain. Annals of Forest Science, 64 (7), 787-798.

Reinhardt, E.D., Scott, J., Gray, K., Keane, R. 2006. Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements. Canadian Journal of Forest Research, 36, 2803-2814.

Reynolds, M.R., Burk, T.E., Huang, W. 1988. Goodness-of-fit tests and model selection procedures for diameter distributions models. Forest Science, 34, 377-399. forestscience/34.2.373

Riaño, D., Meier, E., Allgower, B., Chuvieco, E., Ustin, S. 2003. Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment, 86, 177-186.

Riaño, D., Chuvieco, E., Ustin, S.L., Salas, J., RodríguezPérez, J.R., Ribeiro, L.M., Viegas, D.X., Moreno, J.M., Fernández, H. 2007. Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. International Journal of Wildland Fire, 16(3), 341-348.

Ruiz-González, A.D., Álvarez-González, J.G. 2011. Canopy bulk density and canopy base height equations for assessing crown fire hazard in Pinus radiata plantations. Canadian Journal of Forest Research, 41, 839-850.

Sánchez Alberola, J., Oliver, P., Estornell, J., Dopazo, C. 2018. Estimación de variables forestales de Pinus sylvestris L. en el contexto de un inventario forestal aplicando tecnología lidar aeroportada. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 21, 79- 99.

Sando, R.W., Wick, C.H. 1972. A method of evaluating crown fuels in forest stands. USDA Forest Service. Research paper NC-84. ´

SAS Institute Inc. 2012. SAS/ETS® 12.1 User’s Guide. Cary, N.C.

Schaaf, M.D., Sandberg, D.V., Schreuder, M.D., Riccardi, C.L. 2007. A conceptual framework for ranking crown fire potential in wildland fuelbeds. Canadian Journal of Forest Research, 37(12), 2464-2478.

Scott, J.H., Reinhardt, E.D. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service Rocky Mountain Research Station, Research Paper RMRS-RP-29.

Skowronski, N.S., Clark, K.L., Duveneck, M., Hom, J. 2011. Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment, 115(2), 703-714.

Stocks, B.J., Alexander, M.E., Wotton, B.M., Stefner, C.N., Flannigan, M.D., Taylor, S.W. et al. 2004. Crown fire behaviour in a northern jack pine-black spruce forest. Canadian Journal of Forest Research, 34, 1548–1560.

Streutker, D.R., Glenn, N.F. 2006. LiDAR measurement of sagebrush steppe vegetation heights. Remote Sensing of Environment, 102(1-2), 135-145.

Van Wagner, C.E. 1977. Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 7, 24-34.

Vega, J.A., Fernández, C., Jiménez, E., Ruiz-González, A.D. 2009. Impacto de un escenario de cambio climático sobre el peligro de incendios en Galicia. En: Pérez, V., Fernández, M., Gómez, J.L (Coor). Evidencias e Impactos del Cambio Climático en Galicia, 583-607. Xunta de Galicia. Santiago de Compostela

White, J.C., Wulder, M.A., Varhola, A., Vastaranta, M., Coops, N.C., Cook, B.D., Pitt, D., Woods, M. 2013. A best practices guide for generating forest inventory attributes from airbone laser scanning data using an areabased approach (Version 2.0). Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre.

Williams, D.F. 1978. Fuel properties before and after thinning in young radiata pine plantations. Fire Management Branch. Department of Conservation and Environment. Research Report 3.

Zaffalon, M. 2005. Credible classification for environmental problems. Environmental Modelling and Software, 20(8), 1003-1012.





Research articles