Classification of Landsat 8 images in the Segura Hydrographic Demarcation

M. I. Rodríguez-Valero, F. Alonso-Sarria

Abstract

This work presents a cartography of land uses in the Segura Hydrographic Demarcation obtained by classifying 2017 Landsat 8 images. The classification was carried out using two classifiers: Maximum Likelihood (ML) and Random Forest (RF). Training areas were obtained from historical high resolution imagery until 2016. Prior to classification, a cross validation analysis of the training areas was carried out to determine which of them may have undergone a change of use between 2016 and 2017. The results obtained with ML and RF, both with the original set of training areas and with the one obtained eliminating the problem, are compared to determine the best option. In the case of ML, the results improve after eliminating the changing training areas, from 77.7% to 81.4%; however, with RF this improvement is not so important, going from 84.1% to 85.1%. Therefore, it can be concluded that, with both methods, the classification is more exact when the modified training areas are used and, although the results obtained are quite acceptable for both ML and RF, the latter performs a more accurate classification.


Keywords

Random Forest; Maximum Likelihood; land use; remote sensing; Landsat 8

Full Text:

PDF

References

Ayala, R., Menenti, M. 2001. Metodología para la búsqueda del mejor clasificador de imágenes de satélite. Teledetección, Medio Ambiente y Cambio Global, 469-472.

Berberoglu, S., Curran, P.J., Lloyd, C.D., Atkinson, P.M. 2007. Texture classification of Mediterranean land cover. International Journal of Applied Earth Observation and Geoinformation, 9(3), 322-334. https://doi.org/10.1016/j.jag.2006.11.004

Berk, R.A. 2016. Statistical learning from a regression perspective. Springer. https://doi.org/10.1007/978- 3-319-44048-4 Breiman, L. 2001. Random Forests Machine Learning 45(1), 5-32. https://doi. org/10.1023/A:1010933404324

Cánovas, F., Alonso, F., Gomariz, F. 2016. Modificación del algoritmo Random Forest para su empleo en clasificación de imágenes de Teledetección. Aplicaciones de las Tecnologías de la Información Geográfica (TIG) para el desarrollo económico sostenible, 359-368.

Chávez, P.S. 1996. Image-Based Atmospheric Corrections - Revisited and Improved. Photogrammetric Engineering and Remote Sensing, 62, 1025-1036.

Chen, X., Zhao, H., Li, P., Yin, Z. 2006: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133-146. https://doi.org/10.1016/j.rse.2005.11.016

Chiarito, G., Chiarito, E. 2015. Evaluación de temperaturas urbanas de acuerdo al uso del suelo: Rosario. Avances en Energías Renovables y Medio Ambiente, 19, 93-102.

Chuvieco, E. 1996. Fundamentos de Teledetección Espacial. Madrid: Rialp. Tercera Edición Revisada.

Chuvieco, E. 2010. Teledetección Ambiental. La observación de la Tierra desde el espacio. Barcelona: Ariel Ciencia.

Congedo, L. 2016. Semi-Automatic Classification Plugin Documentation. Último acceso: 14 de mayo, 2018, de https://doi.org/10.13140/RG.2.2.29474.02242/1

Efron, B., Hastie, T. 2018. Computer Age Statistical Inference Cambridge University Press.

Ezzine, H., Bouziane, A., Ouazar, D. 2014. Seasonal comparisons of meteorological and agricultural droughtindices in Morocco using open short timeseries data. International Journal of Applied Earth Observation and Geoinformation, 26(1), 36-48. https://doi.org/10.1016/j.jag.2013.05.005

García, P, Pérez, M.E., García, J.M., Redondo, M.M., Sanz, J.J., Navarro, A. 2014. Sellado de suelos a partir de teledetección y SIG: estudio en el Tajo medio-alto. Dpto. de Análisis Geográfico Regional y Geografía Física. Universidad Complutense de Madrid.

Gomariz, F., Alonso, F., Cánovas, F. 2017. Improving Classification Accuracy of MultiTemporal Landsat Images by Assessing the Use of Different Algorithms, Textural and Ancillary Information for a Mediterranean Semiarid Area from 2000 to 2015. Remote Sensing, 9(10), 1058. https://doi.org/10.3390/rs9101058

Landis, J.R., Koch, G.G. 1977. The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310

Maxwell, A.E., Warner T.A., Fang, F. 2018. Implementation of machine-learning classification in remote sensing: an applied review, International Journal of Remote Sensing, 39(9), 2784-2817. https://doi.org/10.1080/01431161.2018.1433343

Moran, M.S., Jackson, R.D., Slater, P.N., Teillet, P.M. 1992. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sensing of Environment, 41(2-3), 169-184. https://doi.org/10.1016/0034-4257(92)90076-V

Pérez, Ll., Delegido, J., Rivera, J.P., Verrelst, J. 2015. Análisis de métodos de validación cruzada para la obtención robusta de parámetros biofísicos. Revista de Teledetección, 44, 55-65. https://doi.org/10.4995/raet.2015.4153

Santana, L.M., Escobar, L., Capote, P. 2010. Estimación de un índice de calidad ambiental urbano, a partir de imágenes de satélite. Revista de Geografía Norte Grande, 45, 77-95. https://doi.org/10.4067/S0718- 34022010000100006

Wang, Q.N., Tenhunen, J.D. 2004. Vegetation mapping with multitemporal NDVI in North Eastern China Transect (NECT). International Journal of Applied Earth Observations and Geoinformation, 6(1), 17- 31. https://doi.org/10.1016/j.jag.2004.07.002

Xu, H. 2006. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27, 3025-3033. https://doi.org/10.1080/01431160600589179

Zhou, Z.H. 2012. Ensemble methods. Foundations and algorithms CRC Prss. https://doi.org/10.1201/b12207

Abstract Views

945
Metrics Loading ...

Metrics powered by PLOS ALM




This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Universitat Politècnica de València

Official Journal of the Spanish Association of Remote Sensing

e-ISSN: 1988-8740    ISSN: 1133-0953           https://doi.org/10.4995/raet