Arquitectura oblicua y trazas de montea

Juan Caramuel de Lobkowitz, madrileño, monje cisterciense, abad de Melrose y Disemberg, de los benedictinos de Viena y de Nuestra Señora de Emaús de Montserrat en Praga, obispo de Misia, Campagna y Vigevano, arzobispo electo de Otranto, enseñó Teología en Alcalá y Lovaina, disputó con Gassendi acerca de los satélites de Júpiter, defendió Praga de los suecos en la guerra de los Treinta Años y fortificó Lovaina contra los holandeses y los franceses en las guerras de Flandes, teorizó por primera vez el sistema binario de numeración, anticipó la lógica borrosa, sostuvo los derechos de la monarquía española al Reino de Portugal, trabajó en el problema de las longitudes geodésicas en polémica con Mersenne, fue de los primeros en señalar la heterodoxia de algunas proposiciones del Agustín de Jansenio y en consecuencia tuvo el honor de ser atacado por Pascal en Les provinciales, refutó la teoría cartesiana de las turbulencias, reformó la plaza bramantesca de Vigevano, escribió más de cincuenta obras sobre teología, criptografía, derecho político, astronomía, lógica, matemáticas, combinatoria y diversas ciencias naturales, y aún le quedó tiempo para publicar en sus prensas episcopales de Vigevano una Arquitectura Civil Recta y Oblicua considerada y dibujada en el templo de Jerusalén que debió tener apreciable difusión en la Italia de finales del siglo XVII, a juzgar por los insultos de Guarino Guarini en su Architettura Civile.

José Calvo López
Universidad Politécnica de Cartagena

La Arquitectura Recta ha despertado en los últimos años un cierto interés en nuestro país...
doscientos años de antigüedad al menos, entre las que juega un papel nuclear el arte de la monteada; la antecedente renacentista de lo que después se denominó estereotomía, y que lejos de regirse por el capricho, obedece a leyes geométricas más rigurosas que las que gobiernan las obligaciones y transformaciones de la arquitectura de nuestro tiempo.

ARCOS OBLICUOS

Uno de los capítulos del sexto tratado de la Arquitectura caramueliana se refiere a arcos oblicuos. El texto expone tres de ellos: comparándolos con textos fundamentales de la cantería renacentista y barroca, como los de Philibert De L’Orme, Alonso de Vandelvira, Ginés Martínez de Aranda y François Derand, se comprende que Caramuel se está refiriendo a tres tipos básicos del arte de la monteada, los conocidos como «Arco abocinado» o «Canoniére», «Arco viaje contra viaje por cara» o «Blaisse pasé» y «Arco viaje contra cuadrado por lado». En los tres casos se trata de abrir arcos en un muro de paramentos planos, verticales y paralelos, con jambas oblicuas. En el «Arco abocinado» las dos jambas son oblicuas a los paramentos, pero simétricas al eje de hueco; en el «Arco viaje contra viaje por cara» las dos jambas son oblicuas al muro pero paralelas entre sí; mientras que en el «Arco viaje contra cuadrado por lado» una jamba es perpendicular a los paramentos pero la otra es oblicua a éstos y a la primera jamba.

Aunque Caramuel sólo dedica un capítulo a la materia, parece claro que juega un papel semanal en la Arquitectura oblicua; el autor nos confiesa que «Empece a escribir y delinear estas ideas [sobre Arquitectura Oblicua] a la España, siendo mozo, año de 1624 con ocasión de una hermosa capilla, que en nuestro Monasterio se erigía: y ahora me hallo harto viejo, y siempre las voy perfeccionando». En la iglesia monástica no hay balaustres inclinados en columnas elípticas, pero el Monasterio de La Espina es uno de los edificios españoles de todas las épocas más ricos en piezas singulares de cantería. La capilla mayor luce una espléndida composición triple, formada por un «Arco abocinado» con junta en la clave, como el de la Arquitectura caramueliana, flanqueado por dos «Arcos viaje contra cuadrado por lado»; el crucero se cubre con una bóveda sobre trompas de realización bien cuidada; a la capilla de La Santa Espina se llega a través de una pareja de «Arcos viaje contra viaje»; y otra de las capillas laterales aparece una verdadera pieza de bravura, un «Arco avanzado en bóveda viaje por cara», esto es, abierto en una bóveda y además esviado; la puerta principal de la cerca exterior del monasterio se resuelve con una «puerta», esto es, una combinación de dintel y capitalizado.

Se puede comprobar en qué medida Caramuel pensaba en La Espina cuando hablaba de arcos oblicuos observando detenidamente la lámina tercera de la cuarta parte del volumen de estampas que acompaña su obra, grabada para exponer las situaciones que pueden dar lugar a la aparición de arcos oblicuos. Aunque la planta general, vagamente clásica, es muy diferente de la de la iglesia monástica, el singular esquema triple de la cabecera de La Espina, con un arco abocinado flanqueado por dos «viaje por lado», se repite literalmente en la lámina; en otros puntos aparecen arcos «viaje contra viaje», como también sucede en el monasterio.

A lo largo de los siglos XVI y XVII los tratadistas de cantería españoles y franceses se habían esforzado en encontrar métodos de labra precisos y económicos de las dovelas de estos arcos, que se podían agrupar a grandes rasgos en dos estrategias geométricas. La labra «por robos», basada en proyecc-
Arco abocinado. Ginés Martínez de Aranda. Cerramientos y trazas de monte, pl. 33

El «Arco abocinado» brilla por su ausencia en los tratados de De L'Orme y Vandelvira, quizá por su sencillez, pero toda una escuela española formada por Cristóbal de Rojas, Ginés Martínez de Aranda y el autor del manuscrito que llamamos de Alonso de Guardia había encontrado poco a poco una solución [2] basada en la obtención de una plantilla de lecho y una plantilla de intrados, que permitían labrar las dovelas del arco sin desperdicio de trabajo ni material; dado que el arco es una figura de revolución, basta con emplear una sola plantilla de lecho y una sola plantilla de intrados.

Los otros dos arcos planteados problemas más profundos. El «Arco viaje contra viaje», el de jambas oblicuas a los paramentos pero paralelas entre sí, podía resolverse por medio de juntas de intrados horizontales y paralelas a las jambas. En ese caso, resultaba relativamente fácil la obtención de las planillas, pero los planos de lecho no eran perpendiculares a la directriz del arco en las cercanías de la clave, lo que da lugar a un «empuje al vacío» que queda sin compensar y del que era bien consciente Ginés Martínez de Aranda. La solución a este problema pasaba por disponer los planos de lecho como un haz que tiene como recta común una perpendicular a los paramentos del arco y al plano de la directriz. Ginés Martínez de Aranda es el primero que plantea el problema por separado de otras «trazas» y ofrece en el mismo dibujo dos soluciones, una «por robos» con una construcción que le permite obtener...
el ángulo que forma la junta de intrádós con la de testa o «saltarregla»; y otra por plantillas, de ejecución difícil porque el intrádós es una superficie reglada alabeada. [3] Los maestros franceses del siglo XVII, como Jousse o Derand sólo resuelven el problema «por robos» con una técnica muy depurada que les permite obtener la «saltarregla» con un esfuerzo de trazado mínimo. [4]

El «Arco viaje contra cuadrado por lado» presenta dificultades similares, pero aquí el «empuje al vacío» es menos acusado y Alonso de Vandelvira obtiene un intrádós cónico repartiendo en partes
iguales los arcos de las dos testas, lo que permite labrar las dovelas «por plantas» sin ninguna dificul-
tad [5]; sin embargo, la solución no encontró mucho eco, y Cristóbal de Rojas resuelve el problema «por
robo» con ayuda de una «saltarregla», exactamen-
te igual que en el arco anterior. [6]

Caramuel hace tabla rasa de estos métodos arte-
sanales y pretende hallar una solución general y sis-
temática al problema de los arcos esquivados. En rea-
lidad, lo que hace es aplicar a los tres casos la solu-
ción ya conocida para labrar el «Viaje contra viaje por
cara», pero prescinde de la «saltarregla» tradi-
cional. La solución pone al descubierto el desconoci-
menio de Caramuel, monje y no cantero, de los pro-
cedimientos de labra, y por tanto, no ya de las solu-
ciones, sino incluso de los problemas que plantea el
«arte de la montea».

Renunciar a las plantillas de intradós en el «Arco
abocinado», de intradós cóncico y por tanto desarro-
llable, no ofrece otro resultado que el desperdicio de
la cuña de material que hay que «robar» por debajo
de la superficie de intradós; no parece que el objeti-
vo de Caramuel sea evitar el gasto y el trabajo que
ocasiona la realización de plantillas de madera, por
que precisamente en este arco se puede labrar con
una sola plantilla de intradós y una sola plantilla de
lecho, dado su carácter de superficie de revolución.
Por otra parte, la solución que aporta para el «Arco
viaje contra viaje por cara» y el «Arco viaje contra
cuadrado por lado» es básicamente la misma de De
L'Orme, Vandervita y Aranda; eliminar el trazado de
la «saltarregla», el ángulo que forman la junta de
intradós y la de testa, sólo puede ocasionar una pé-
dida de precisión; tampoco se puede pensar aquí
que se ahorrara esfuerzo, pues el trazado de la «sal-
tarregla» es muy sencillo y el instrumento que la trans-
porta desde el trazado a la pieza a labrar era reu-
tilizable y de uso muy común entre los canteros.

Por tanto, a pesar de su escasa utilidad práctica,
el capítulo que Caramuel dedica a los arcos oblicuos
tiene interés por varias razones: incluye el «arte de
la montea» entre los temas de la Arquitectura obli-
cua, nos indica que desempeñaba un papel generador
en la construcción de ésta y también deja bien claro
que fue en su etapa de juventud en el Monasterio de
La Esplina donde empezó a conocer el arte de los
canteros y a interesarse por la arquitectura oblicua.
En los apartados que siguen veremos cómo la rela-
ción entre el arte de la montea y la arquitectura obli-
cua también se manifiesta de manera indirecta, pero
inequívoca, en otros temas.

ÓRDENES RAMPANTES

Nada más comenzar el sexto tratado, Caramuel
crítica duramente «la escalera principal del
Vaticano», es decir, la Scala Regia berniniana,
por precisar dados sobre los capiteles de las columnas
que la flanquean para adaptarse al entablamento
oblicuo que las corona; más adelante propondrá
como solución trazar todo el orden, incluidas basas
y capiteles, sin emplear líneas horizontales, sino úni-
camente líneas con la inclinación de la escalera. [7]

Aunque la propuesta pueda parecernos sorpre-
dente, no era en absoluto nueva. Un siglo antes,
Philibert De L'Orme había dirigido un ataque idóntico
a otra escalera vaticana, la construida por Bramante
en el palacio del Belvedere:

He visto una escalera parada [... en el lugar
llamado Belvedere junto al palacio del Papa en
Roma [...] una escalera redonda bastante grande
con hueco en el centro, por el que recibe la luz [...] es
una obra bella y bien hecha. Pero si el
Arquitecto que la dirigió hubiera conocido los tra-
izados de Geometría [...] la hubiera hecho rampa-
te en todas sus partes, incluso las basas y
capiteles, que los ha hecho todos cuadrados,
como si fueran para un pórtico que fuera derecho
y a nivel; por encima de las capiteles y por debajo
de las basas [...] ha puesto cuñas de piedra para
ganar la altura de la rampa. Esto muestra que el
obrero que la ha hecho no sabía lo que el
Arquitecto tiene que saber. Porque en lugar de
hacer la bóveda de ladrillo, la hubiera hecho de pie-
dra labrada, y de una columna a otra arcos ram-
pantes [... Así hubiera demostrado conocer bien
su arte de Arquitectura. Es un buen tema para
hacer una bóveda, [...] acompañada de comparti-
mentos y molduras todas rampantes y hubiera
sido cosa sin par [...]

De L’Orme no incluye dibujos de su propuesta en
el Premier Tome, pero la solución aparece en el Libro
de trazas de cortes de piedras de Alonso de Vandelvira, en el «Caracol de Emperadores», que consta de dos escaleras helicoidales, una dentro de otra. Como propone De L'Orme, las basas y capiteles se trazan siguiendo líneas inclinadas, en este caso las hélices de la escalera [8]; sobre los capiteles apoyan, no el entablamento helicoidal de Bramante, sino arcos por tranquil; y la bóveda que cubre la escalera exterior no es de ladrillo, sino de piedra labrada, y no de cualquier traza, sino resuelta precisamente con el más difícil de los «cortes» de la época, la cima del saber cantorial: la mítica «Vía de Saint-Gilles» o «Vía de San Gil».

Merece la pena observar en el dibujo de Vandelvira que las tres decisiones son independientes; es decir, que se podrían haber trazado las basas y capiteles oblicuos sin cerrar la bóveda en piedra, o apoyar la «Vía de San Gil» sobre un entablamento y éste sobre los capiteles, sin mediación de los arcos. Si De L'Orme relaciona las basas y capiteles oblicuos, los arcos, y la bóveda pétrea, no es porque sintácticamente sea necesario, sino porque para trazar y ejecutar unos y otras es necesario a los ojos de De L'Orme un conocimiento específico, el de los «traits de Geometrie», es decir, el conocimiento tradicional de los canteros tardomedievales, el «art du trait», potenciado en el siglo XVI por la geometría de Euclides, que por primera vez se traduce en esa época a la lengua vulgar y se expone de una manera asequible.

Pero a su vez la propuesta de De L'Orme sólo era nueva en parte; su aportación consiste en extender a órdenes completos lo que ya se hacía con los balauestres de las escaleras, al menos desde la época de la célebre escalera del castillo de Blois, hacia 1515-1516. La idea llega a España muy pronto; si los balauestres de la escalera del castillo de La
Calahorra, importados de Génova en 1510, se trazan con horizontales, los de la escalera capitular de la catedral de León, entre 1510 y 1523, la del Colegio Mayor del Arzobispo Fonseca en Salamanca hacia 1630, la del Hospital de Santa Cruz de Toledo, de Alonso de Covarrubias, hacia 1535, o la de Soto en San Esteban de la misma ciudad, hacia 1553 - 1557, entre otras muchas, se resuelven con líneas inclinadas. Especial interés tiene la escalera que baja del Pórtico de la Gloria compostelano a la Plaza del Obradoiro, construida o al menos reformada casi completamente por Ginés Martínez de Aranda en 1606, pues incluye unas pilastras singulares, mitad rectas, mitad oblicuas, [10] que reaparecen como capiteles en el tratado de Caramuel. [9]

Incluso podríamos remontarnos más atrás, pues ésta forma de trazar balaustras corresponde a una transformación a fin; es decir, los puntos originales y sus transformados están unidos por rectas paralelas, mientras que las rectas originales y sus transformadas se cortan en un eje de afinidad, que puede corresponder al eje de la columna. Desde este punto de vista, tal transformación se puede relacionar con los nervios revirados o con «bulco» de la tradición gótica española o a las claves esviadas del claustro de la catedral de León o del atrio de la catedral de Oviedo.

De esta manera, lo que hace Caramuel es teorizar, sistematizar y dibujar con exquisita precisión lo que se construía y dibujaba en Francia y en España desde hacía ciento cincuenta años al menos. Los balaustrades de las láminas primera, sexta y décimo quinta de la cuarta parte del volumen de grabados que acompaña su obra son derivados de los de Blois y Santa Cruz, los arcos de la decimosexta y la vigésima y los capiteles de la novena, décima, duodécima, décimocuarta y décimo octava de los de De L’Orme y Vandelvira, las pilastras y capiteles híbridos de la primera y décimonovena recuerdan a los del Obradoiro e incluso algunas figuras como el...
rótulo radial del segundo grabado de la segunda parte [11] y la balaustrada curva de la vigésimo quinta de la cuarta parte, propuesta como alternativa a la escalera beminiana que baja a la Confesión de San Pedro, podrían relacionarse con una construcción expuesta por Martínez de Aranda en los Cerramientos y trazos de montón. [12]

Aunque estas cuestiones no pueden encuadrarse dentro de lo que hoy conocemos por estereotomía, han estado siempre ligadas a los tratados de cantería; en época de Caramuel, Abraham Bosse, que antes había publicado Le trait à preuves de M.

Desargues por la coupe des pierres, incluye los balaustres oblicuos en el Traité des Manières de desinier les Ordres de l'Architecture antique en toutes leurs parties, que en realidad es una recopilación de temas muy diversos sin más objeto aparente que poner a disposición de los canteros los hallazgos de exquisita precisión lo que ya se hacía 150 años antes.
ma de la relación entre el arte de la montea y el tema de los balaustres y órdenes oblicuos es la que apunta De L'Orme: una y otros requieren del arquitecto el dominio de los trazados geométricos: no sólo el conocimiento teórico de la geometría, sino también la sotura en el empleo de los instrumentos de trazado.

COLUMNAS ELÍPTICAS

Más original parece el tema planteado por Caramuel en los artículos VI, VII y VIII del sexto tratado. Las columnas que cieren un teatro de planta redonda no deben ser precisamente circulares, pues no se inscriben en cuadrados con las de una columnata recta, sino en trapezoides, que circunscindeben elipses. [14] Por otra parte, si la columnata circular consta de varias filas de columnas, las secciones de las columnas de cada fila serán diferentes, pues los lados radiales, rectos, de los trapezoides, se van separando conforme se alejan del centro y por tanto los lados curvos son mayores en las filas exteriores. Si la columnata no es circular, sino elíptica, Caramuel propone además jugar con la dimensión de estos lados curvos para dar una impresión de regularidad, trazando un círculo con centro en el centro de la elipse, marcando sobre este círculo anchos iguales y proyectándolos sobre la elipse; como resultado, vistas desde el centro todas las columnas parecerán iguales. [15]

Se ha señalado que todo esto es un nuevo ataque, escasamente solapado, contra la plaza berniniana de San Pedro. Si al exponer el problema Caramuel habla de un teatro, cuando se refiere a los edificios de Roma moderna no pierde ocasión de dirigir sus dardos contra Bernini. Pero es dudoso que la solución de Caramuel sea preferible a la ejecutada. Como es sabido, la plaza no está trazada como una elipse, sino como un óvalo, y por tanto los brazos laterales son sendos arcos de círculo; el observador
colocado en el centro de estos arcos de círculo percibe las columnas como iguales, y además disfruta del conocido efecto por el cual la primera fila de columnas oculta las otras tres. En suma, la solución de Caramuel, como los magníficos trampantojos romanos de aquellos años, sólo produce la impresión deseada desde un único punto de vista, mientras que la de Bernini consigue este efecto desde dos puntos, sin construcciones artificiosas.

Aunque las columnas de sección elíptica de Caramuel puedan parecer insólitas, de nuevo encontramos precedentes en la tradición española del siglo anterior. Aparecen por lo menos en tres edificios diferentes: el palacio Pimentel de Valladolid, anterior al nacimiento de Felipe II en 1527; la Sacra Capilla del Hospital de El Salvador de Úbeda, cuya sacristía contrató Andrés de Vandelvira en 1540; y la esquina suoriental del palacio de los Guzmán de León, [16] iniciada en 1566, con intervención de Rodrigo Gil de Hontañón y Juan del Riberu Rada, aunque en la segunda obra se vean reducidas a pedestales y estílicas bajo y sobre dos cariatides. En los tres casos encontramos una pareja de columnas o escul- turas que flanquean una ventana de ángulo, resuelta siempre con la traza de montafia que Aranda denomina «Arco por esquina y rincón», para Alonso de Vandelvira una puerta, [17] aunque en Valladolid se emplea una variante poligonal que prefigura la conoci- cida voluta Jónica de Caramuel. Si se examinan bien los tres ejemplos, tanto el arco o puerta propiamente dicho como las columnas elípticas o las cornisas «en punta de flecha» de Úbeda, al decir de Marías, que también aparecen en Valladolid y León, forman parte de una misma composición geométrica, que parte de la contradicción geométrica de este tipo de arcos.

En efecto, el problema estereotómico de la pieza se puede resolver trazando las juntas de intradós paralelas a las jambas, como está hecho en nuestro siglo en la llamada Casa de Colón de Valladolid. Pero esta solución es estructuralmente muy ineficaz, puesto que si los dos muros en cuyo encuentro se abre el arco forman ángulo recto, sobre la clave actúan dos reacciones en los planos de los muros, que no se compensan ni siquiera parcialmente. Para lograr que los empujes se compensen, la solución adoptada en muchos casos es la de disponer las juntas de intradós paralelas al plano bisector de los paramentos de los dos muros; esto obliga a hacer paralelas a dicho plano las jambas, pues de lo contrario aparecen complicaciones innecesarias en la resolución del salmer. De esta manera, la geometría de la pieza se apoya no sólo en los dos muros que se encuentran, sino en el plano bisector de ambos. Las aristas de los frentes de las cornisas son paralelas al plano del muro en que apoyan, mientras que
Caramuel dedica a la arquitectura oblicua, incluyendo otros temas heteroclíticos como la larga discusión sobre el énthesis de las columnas, resuelto por medio de la línea cordial o la curiosa referencia al amasamiento de llaves del artículo XVII. Que la arquitectura emplea la geometría es hoy una proposición banal; no lo era tanto en el siglo XVII. En España la geometría está todavía presente en los trazados en planta, como demuestra el manuscrito de Rodrigo Gil, copiado con diligencia por Simón García por aquellos años; en la tradición canteril española, viva y pujante todavía al menos hasta la época de Durero, el manuscrito de Portor y Castro, fechado en 1703; en la no menos pujante carpintería hispánica, recogida por escrito por López de Arenas en 1633; en solisificados diseños de elementos de detalle como los balaustres oblicuos o las molduras y pasamanos de Vandelvira y Aranda; y, aunque parece extraño a nuestros ojos, en fórmulas geométricas para el dimensionado de elementos estructurales como las de Rodrigo Gil y sobre todo la regla de cálculo de esfíndoles de Gines Martínez de Aranda, que adoptan Derand, Blondel o Tosca ya muy avanzado el siglo XVII o entrado el XVIII.

No es de extrañar que este papel central de la geometría se refleje en la estructura de la obra de Caramuel, matemático antes que arquitecto. Como Juan de Torija, que colocaba a la Arquitectura, «dama hermosa científica», bajo la protección de la Aritmética y la Geometría, Caramuel considera ciencias necesarias para el arquitecto la aritmética, la logaritmos y la geometría, que incluye al principio de su obra, mientras que considera útiles, pero no imprescindibles, la Pintura, la Estatuaría, la Fisonomía, la Perspectiva, la Música, la Astronomía y la Arquitectura Militar, que aparecen al final.

Encontramos planteamientos muy similares en la obra del gran adversario de Caramuel, la Arquitectura Civil de Guarino Guarini. Con ser muy diferente, y muy superior, la estereotomía de Guarini se asemeja a la de Caramuel, y también a la de Desargues, en un punto: las tres son creaciones abstractas de tres matemáticos, poco útiles para el trabajo diario de labra de un cantero. Quizá por eso Guarini dirá, con frase casi impensable en la Italia central: «L’architettura, sebbene dipenda della matematica […]». Esta gradación de valores contrasta vivamente con la conocida proposición, que arranca al menos de la época de Cenini Cennini, según la cual las tres artes mayores derivan de un tronco común materializado por el disegno, dibujo e idea al mismo tiempo, pero obviamente no el dibujo geométrico sino el dibujo a mano alzada, y a partir de la segunda mitad del siglo XVI, especialmente el dibujo de anatomía del natural.

ARQUITECTURA OBLICUA
Y GEOMETRÍA

Es esta aplicación de la geometría a la arquitectura la que suministra el hilo conductor del libro que sus remates se trazan perpendicularmente al plano bisector de ambos muros; de ahí las «puntas de flecha» que señalaba Marias.

La misma geometría contradictoria genera las columnas, pedestalos o cestillos de sección elíptica, que se inscriben en rombos con dos lados paralelos al muro al que se adosan y dos lados paralelos al plano bisector de los dos muros. Por tanto, el principio generador de estas columnas es comparable al que da lugar a las de Caramuel; tanto unas como otras surgen al inscribir una figura en una envolvente obtenida por deformación de un cuadrado. De nuevo la relación entre trazas de monteja y arquitectura oblicua viene dada por la destreza geométrica necesaria para resolver unas y otra.
Aquí puede estar en parte la razón de la acogida hostil de la obra de Caramuel en Italia. Los temas principales de la arquitectura oblicua son despreciados en Italia: el primer tratado de estereometría italiana es precisamente el de Guarini, escrito algo después de la Arquitectura Civil Recta y Oblicua e influenciado a su pesar por ella; los balaustres oblicuos son difíciles de encontrar en Italia, salvo en el hispanizado reino de Nápoles; las ventanas de ángulo y las columnas elípticas brillan por su ausencia, salvo las ventanas venecianas de la época de Jacopo Belini y Filarete, completamente diferentes de las españolas como ya demostró Paloma Hoyo de Blas. La obra, escrita en castellano pero salida de la imprenta episcopal de Vigevano, representaba una inoportuna intrusión española en los debates acerca de la plaza de San Pedro y el palacio del Vaticano. De ahí el aparente desprecio de Guarini por «un certo, che ha scritto nella Favella Spagnuola di Architettura».

Desprecio sólo aparente, porque Guarini toma de Caramuel, o al menos de la tradición hispano-francesa, mucho más de lo que reconoce. Nikolaus Pevsner se preguntaba por el origen de los arcos tridimensionales de la iglesia de Vierzehnheiligen; de Neumann saltaba a Guarini sin dificultad, pero no encontraba más antecedente de los arcos de San Lorenzo y la Santissima Sindone de Turín que la cappella del castillo de Anet, de Philibert de L'Orme, y no acertaba a encontrar el nexo entre Guarini y De L'Orme. Hoy se puede rastrear este nexo con más claridad; como ya sospechaban Werner Müller y Wittkower, en los años que Guarini pasó en París debió conocer la rica literatura canteril francesa, desde el tratado de De L'Orme, que se reeditó en dos ocasiones a lo largo del siglo XVII, a las obras más recientes de Jousse, Derand y Desargues. Por otra parte, son bien conocidas las especulaciones, hoy por hoy imposibles de confirmar o desmentir, según las cuales Guarini habría tenido conocimiento de la arquitectura árabe al cruzar la península Ibérica para trabajar en Santa María de la Divina Providencia de Lisboa, o al construir en Messina, al fin y al cabo bajo dominación española, Santa María Annunziata. El mismo razonamiento se puede aplicar a la cantería española, que Guarini pudo conocer directamente en su hipotético viaje a Lisboa o indirectamente en Messina; pero todo esto seguiría perteneciendo al terreno de las especulaciones.

Lo que sí parece claro son los préstamos de Caramuel en la Architettura Civile. Werner Oeschin ha señalado cómo la apreciación del Gótico por Guarini deriva de Caramuel, y que los párrafos que Guarini le dedica son idénticos a los de la Arquitectura civil recta y oblicua. También en otros capítulos de la obra la influencia de Caramuel es indiscutible: Guarini ataca el empleo de la arquitectura oblicua en el capítulo octavo de su segundo tratado y el vigésimo quinto del tercer tratado, pero lo aprueba en el capítulo vigésimo tercero del mismo tercer tratado; algunas láminas de la edición póstuma de 1737 son calcos de las de Caramuel, particularmente las de la decimocuarta lámina del tercer tratado. [18] que toman casi literalmente ideas de la
Cornisas oblicuas.
Sebastiano Serlio.
Tutta l'opera d'Architettura. I I, f 8

20

El «transferases» como medio de cambio de escala.
Hernán Ruiz, Libro de arquitectura, f 40

21
décima y décimo octava de la cuarta parte del tercer tomo de Caramuel, aunque en esto no es fácil saber cuánta responsabilidad corresponde a Guarini y cuánta a sus editores, Bernardo Vittone y los teatinos de Turín.

Sin embargo, Guarini no acepta la paternidad de Caramuel sobre la arquitectura oblicua y se remonta a Serlio. [19, 20] Esto es una verdad a medias que ignora los progresos de más de ciento cincuenta años, pero aporta una indicación muy reveladora. Como ha señalado Rabasa, los manuscritos españoles de carrera recogen el «transporte» serlano y lo convierten en el «transferente», pero cambian por completo su sentido; si el «transporte» serlano era únicamente un método de cambio de escala, Hernán Ruiz, y posteriormente Martínez de Aranda lo emplean aplicando factores de escala diferentes en dos ejes, lo que da como resultado una transformación geométrica realizada con todo rigor. [20, 21, 22, 12]

La deformación, obtenida muchas veces mediante un instrumento serlano adaptado a los fines de los tratadistas españoles, ocupa un lugar central en la literatura española de la cantería. En las primeras páginas de su manuscrito, Martínez de Aranda dice que «traza es toda cualquiera figura que en su distribución causare alteración de robos y extensimiento de líneas y círcunferencias». La transformación geométrica es el núcleo de las trazas de montea, como lo es de la arquitectura oblicua de Caramuel y Guarini.

De esta manera, la deformación barroca, asociada primero a la noción de capricho y después a lo tácito, a lo informe, a la yuxtaposición pulsante o a la síncope musical, puede ser vista bajo la luz bien diferente del rigor geométrico, que aportaría a la arquitectura de los siglos diecisiete y dieciocho una ciencia precisa de la transformación formal. No es posible, claro está, explorar esta temática en toda su amplitud dentro de los límites de este trabajo; baste con señalar la relación de algunos temas de la teoría seiscentista de la arquitectura con la cantería española y francesa del Renacimiento.