Data-driven simulation methodology using DES 4-layer architecture
DOI:
https://doi.org/10.4995/wpom.v7i1.4727Keywords:
Data driven approach, Simulation modeling, Material handling system, Assembly plantAbstract
In this study, we present a methodology to build data-driven simulation models of manufacturing plants. We go further than other research proposals and we suggest focusing simulation model development under a 4-layer architecture (network, logic, database and visual reality). The Network layer includes system infrastructure. The Logic layer covers operations planning and control system, and material handling equipment system. The Database holds all the information needed to perform the simulation, the results used to analyze and the values that the Logic layer is using to manage the Plant. Finally, the Visual Reality displays an augmented reality system including not only the machinery and the movement but also blackboards and other Andon elements. This architecture provides numerous advantages as helps to build a simulation model that consistently considers the internal logistics, in a very flexible way.
Downloads
References
Campuzano, F., y Mula, J. (2011). Supply Chain Simulation: A System Dynamics Approach for Improving Performance. Recuperado a partir de http://books.google.ca/books?id=wlM5xDvWZqMC
Franz, L. . (1989). Data driven modeling: an application in scheduling. Decision Science.
Hao, Q., y Shen, W. (2008). Implementing a hybrid simulation model for a Kanban-based material handling system. Robotics and Computer-Integrated Manufacturing, 24(5), 635-646. http://doi.org/10.1016/j.rcim.2007.09.012
Jiménez-García J. A, Téllez-Vázquez S, Medina-Flores J.M, Rodríguez-Santoyo H. H, C.-O. J. (2013). Materials Supply System Analysis Under Simulation Scenarios in a Lean Manufacturing Environment. Journal of Applied Research and Technology, 10(2), 1-9. http://doi.org/10.1016/S1665-6423(14)70589-9
Kleijnen, J. P. . (1995). Verification and validation of simulation models. 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274), 1. http://doi.org/10.1109/WSC.1998.744907
Lim, D.-E. (2014). A Generic Simulation Framework for Efficient Simulation Analyses for Semiconductor Manufacturing: A Case Study. International Journal of Control y Automation, 7(2), 75-84. http://doi.org/10.14257/ijca.2014.7.2.08
Lu, S. .-Y., Shpitalni, M., y Gadh, R. (1999). Virtual and Augmented Reality Technologies for Product Realization. CIRP Annals - Manufacturing Technology, 48(2), 471-495. http://doi.org/10.1016/S0007-8506(07)63229-6
McLean, C., Jones, A., Lee, T., y Riddick, F. (2002). An architecture for generic data driven machine shop simulator. En Proceeding of the Winter Simulation Conference.
Negahban, A., y Smith, J. S. (2014). Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241-261. http://doi.org/10.1016/j.jmsy.2013.12.007
Pidd, M. (1992). Guidelines for the design of data driven generic simulators for specific domains.
Sly, D., Grajo, E., y Montreuil, y B. (1996). Layout design and analysis software.pdf.
Tjahjono, B., y Fernández, R. (2008). Practical approach to experimentation in simulation study. En Proceedings of the Winter Simulation Conference.
Wang, J., Chang, Q., Xiao, G., Wang, N., y Li, S. (2011). Data driven production modeling and simulation of complex automobile general assembly plant. Computers in Industry, 62(7), 765-775. http://doi.org/10.1016/j.compind.2011.05.004
Wang, N., Li, S. Q., y Wang, J. F. (2011). A Data Driven Modeling and Simulation Methodology for Automotive Assembly Plant. Advanced Materials Research, 346(2012), 228-235. http://doi.org/10.4028/www.scientific.net/AMR.346.228
Wy, J., Jeong, S., Kim, B. I., Park, J., Shin, J., Yoon, H., y Lee, S. (2011). A data-driven generic simulation model for logistics-embedded assembly manufacturing lines. Computers and Industrial Engineering, 60(1), 138-147. http://doi.org/10.1016/j.cie.2010.10.011