Assembly plant simulation to support decision-making on Layout Design considering safety issues. A case study
DOI:
https://doi.org/10.4995/wpom.v7i2.4721Keywords:
Layout design, Material flow, Assembly plant, Discrete event simulation (DES), 4-layer architecture, Forklift free PlantAbstract
This paper presents a simulation model that has been created to support decision-making during the layout redesign of an engine and transmission assembly plant in the automotive sector. The plant requires a new layout and supply logistic due to an increase in its complexity and daily production. Discrete event simulation has been used to validate an initial proposal and to propose different what-if scenarios of layout and operations management systems. These scenarios will be evaluated regarding materials flow generated throughout the plants. The main focus of the decision process was focused on safety issues related to the material handling. The simulation model and its description have been done according to the methodology proposed in Sáez Más, García Sabater, Morant Llorca, y Maheut (2016), where the simulation model is focus as a 4-layer architecture (network, logic, database and visual reality). The achieved model is very flexible and modular, and it allows to save modelling time because of the parameterize of different combinations in layout and operations management.
Downloads
References
Agnetis, A., Pacifici, A., Rossi, F., Lucertini, M., Nicoletti, S., Nicolò, F., … Pesaro, E. (1997). Scheduling of flexible flow lines in an automobile assembly plant. European Journal of Operational Research, 97(2), 348–362. http://doi.org/10.1016/S0377-2217(96)00203-2
Banks, J., y Banks, J.; Carson, J. S.; Nelson, B.; Nicol, D. (2004). Discrete-Event System Simulation. (J. Banks, J. Carson, B. L. Nelson, y D. Nicol, Eds.) (4th ed.). Prentice Hall in an imprint of Pearson. http://doi.org/10.2307/1268124
Bauters, K., Govaert, T., Limère, V., y Landeghem, H. Van. (2015). Forklift Free Factory : a simulation model to evaluate different transportation systems in the automotive industry. International Journal of Computer Aided Engineering and Technology, 7(2), 238–259. http://doi.org/10.1504/ijcaet.2015.068329
Bennett, B. S. (1995). Simulation fundamentals. Prentice Hall International, Hertfordshire (UK) Ltd.
Campuzano, F., y Mula, J. (2011). Supply Chain Simulation: A System Dynamics Approach for Improving Performance. http://doi.org/10.1007/978-0-85729-719-8
Chan, F. T. S., y Chan, H. K. (2005). Design of a PCB plant with expert system and simulation approach. Expert Systems with Applications, 28(3), 409–423. http://doi.org/10.1016/j.eswa.2004.12.002
Cottyn, J., Govaert, T., y Van Landeghem, H. (2008). Alternative line delivery strategies support: A forklift free transition in a high product vareity environment. En 11th International Workshop on Harbor Maritime Multimodal Logistics Modeling and Simulation (HMS 2008) (pp. 55-60). DIPTIM University.
Dias, L. M. S., Pereira, G. A. B., Vik, P., y Oliveira, J. A. (2014). Layout and process optimisation: using computer–aided design (CAD) and simulation through an integrated systems design tool. International Journal of Simulation and Process Modelling, 9(1), 46–62. http://doi.org/10.1504/IJSPM.2014.061437
Garcia-Sabater, J. P., Maheut, J., y Garcia-Sabater, J. J. (2012). A two-stage sequential planning scheme for integrated operations planning and scheduling system using MILP: The case of an engine assembler. Flexible Services and Manufacturing Journal, 24(2), 171–209. http://doi.org/10.1007/s10696-011-9126-z
Garcia-Sabater, J. P., Maheut, J., y García-Sabater, J. J. (2009). A decision support system for aggregate production planning based on MILP:A case study from the automotive industry. 2009 International Conference on Computers and Industrial Engineering, CIE 2009, 366–371. http://doi.org/10.1109/iccie.2009.5223630
Govaert, T. (2011). The feasibility of a Forklift Free Factory : a simulation model in the automotive industry. (Tesina de máster). Recuperado de http://lib.ugent.be/fulltxt/RUG01/001/805/537/RUG01-001805537_2012_0001_AC.pdf. Recuperado el 10-07-2016
Longo, F., Mirabelli, G., y Papoff, E. (2005). Material Flow Analysis and Plant Lay-Out Optimization of a Manufacturing System. 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 5(1), 107–116. http://doi.org/10.1109/IDAACS.2005.283081
Maheut, J., Morant Llorca, J., y Garcia-Sabater, J. P. (2015). Estudio de la configuración productiva de una planta de pre-montaje de unidades aplicando parámetros de presencia máxima de opciones, 6(1), 1–21. http://doi.org/10.4995/wpom.v6i1.3408
MHI. (2016). Material Handling Industry: Glossary. Recuperado de http://www.mhi.org/glossary?q=warehouse+management+systemypb=1yfq=ysort=score+desc. Recuperado el 17-03-2016.
Michalos, G., Makris, S., y Mourtzis, D. (2012). An intelligent search algorithm-based method to derive assembly line design alternatives. International Journal of Computer Integrated Manufacturing. http://doi.org/10.1080/0951192x.2011.627949
Negahban, A., y Smith, J. S. (2014). Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241–261. http://doi.org/10.1016/j.jmsy.2013.12.007
Sáez Más, A., García Sabater, J. P., Morant Llorca, J., y Maheut, J. (2016). Data-driven simulation methodology using DES 4-layer architecture. Working Papers on Operations Management, 7(22), 30. http://doi.org/10.4995/wpom.v7i1.4727
Sly, D., Grajo, E., y Montreuil, y B. (1996). Layout design and analysis software.IIE Solutions, 28(7), 18-25.
Sly, D. P. (1996). A systematic approach to factory layout and design with FactoryPLAN, FactoryOPT, and FactoryFLOW. En Proceedings of the 28th conference on Winter simulation (pp. 584-587). IEEE Computer Society.
Tjahjono, B., y Fernández, R. (2008). Practical approach to experimentation in simulation study. En Proceedings of the 40th Conference on Winter Simulation (pp. 1981-1988). Winter Simulation Conference. http://doi.org/10.1109/wsc.2008.4736292