Plataforma Modular Reconfigurable como Nueva Filosofía para el Desarrollo de Electrónica Vehicular Actualizable

V. Cañas, A. García., J. De las Morenas, J. Blanco

Resumen

Se presenta una nueva concepción en el desarrollo de Unidades Electrónicas de Control (ECU), también denominadas Unidades  de a Bordo (OBU), desde una visión ontológica orientada en la compatibilización de los vehículos con las futuras tecnologías emergentes en el campo de la automoción. Se comienza por un estudio teórico que analiza la problemática en el sector del transporte que va a presentar la convivencia entre los vehículos actuales y los que van a ir apareciendo en el futuro; y que vendrán influenciados por conceptos tales como los vehículos conectados o los vehículos autónomos. Este artículo también aporta una nueva metodología en el diseño de unidades vehiculares de a bordo, basada en el concepto de unidades electrónicas modulares que definen su funcionalidad en base a los módulos que le sean acoplados. Adicionalmente se ha desarrollado un prototipo completo y totalmente funcional con el fin de analizar las posibilidades de la solución propuesta.


Palabras clave

Automoción; Sistemas de Transporte Inteligente (ITS); Arquitecturas de control distribuido y descentralizado; componentes; HiL; DSPs; FPGAs; Sistemas de Criticidad Mixta (MCS)

Clasificación por materias

Control de sistemas de transporte y vehículos

Texto completo:

PDF

Referencias

ACEA, 2017. ACEA Report: Vehicles in use Europe 2017. Avenue des Nerviens 85, Brussels.

Arem, B., Driel, C.J.G., Visser, R., 2006. The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Transactions on Intelligent Transport Systems 7(4), pp. 429-436. https://doi.org/10.1109/tits.2006.884615

Astarita, V., Guido, G., Mongelli, D., Giofre, V.P., 2015. A co-operative methodology to estimate car fuel consumption by using smartphone sensors. Transport 30(3), pp. 307-311. https://doi.org/10.3846/16484142.2015.1081280

Barrachina, J., Garrido, P., Fogue, M., Martinez, F.J., Cano, J.C., Calafate, C.T., Manzoni, P., 2013. Road side unit deployment: a density-based approach, IEEE Intelligent Transportation Systems Magazine 5(3), pp. 30- 39. https://doi.org/10.1109/mits.2013.2253159

Bate, I., Burns, A., Davis, R.I., 2017. An enhanced bailout protocol for mixed criticality embedded software. IEEE Transactions on Software Engineering 43(4), pp. 298-320. https://doi.org/10.1109/tse.2016.2592907

Baur, M., Fullerton, M., Busch, F., 2010. Realizing an effective and flexible ITS evaluation strategy through modular and multi-scaled traffic simulation. IEEE Intelligent Transportation Systems Magazine 2(3), pp. 34-42. https://doi.org/10.1109/mits.2010.939206

Bifulco, G.N., Galante, F., Pariota L., Spena M.R., 2015. A linear model for the estimation of fuel consumption and the impact evaluation of advanced driving assistance systems. Sustainability 7(10), pp. 14326-14343. https://doi.org/10.3390/su71014326

Burns, A., Davis, R., Baruah, S.K., Bate, I., 2018. Robust Mixed-Criticality Systems. IEEE Transactions on Computers 67(10), pp. 1478 - 1491. https://doi.org/10.1109/tc.2018.2831227

Burns, A., Davis, R.I., 2017. A survey of research into mixed criticality systems. ACM Computing Surveys 50(6), 82. https://doi.org/10.1145/3131347

Burns, A., Baruah, S., 2017. Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework. In: Blieberger J., Bader M. (eds) Reliable Software Technologies – Ada-Europe 2017. Ada-Europe 2017. Lecture Notes in Computer Science, vol 10300. Springer, Cham, pp. 203-016. https://doi.org/10.1007/978-3-319-60588-3_13

Cañas V.J., García A., Blanco J., de las Morenas J., 2016, the internet of things applied to the automotive sector: a unified intelligent transport system approach. In: Borangiu T, Thomas A, Trentesaux D, McFarlane D., editors. Service Orientation in Holonic and Multi-Agent Manufacturing - Part II: Recent Advances in Control for Physical Internet and Interconnected Logistics. Springer International Publishing, pp. 53-60. https://doi.org/10.1007/978-3-319-30337-6_5

Chen, B., Cheng, H.H., 2010. A review of the applications of agent technology in traffic and transportation. IEEE Transactions on Intelligent Transport Systems 11(2), pp. 485-497. https://doi.org/10.1109/tits.2010.2048313

Chong, A., 2010. Driving Asia : as automotive electronic transforms a region. Infineon Technologies Asia Pacific Pte Ltd, Singapore.

Christie, D., Koymans, A., Chanard, T., Lasgouttes, J.M., Kaufmann, V., 2016. Pioneering driverless electric vehicles in Europe: The City Automated Transport System (CATS). Transportation Research Procedia 13, pp. 30-39. https://doi.org/10.1016/j.trpro.2016.05.004

Dai X., Burns, A.,2017. Predicting Worst-Case Execution Time Trends in Long-Lived Real-Time Systems. In: Blieberger J., Bader M. (eds) Reliable Software Technologies – Ada-Europe 2017. Ada-Europe 2017. Lecture Notes in Computer Science, vol 10300. Springer, Cham, pp. 87-101. https://doi.org/10.1007/978-3-319-60588-3_6

De Grande, R.E., Boukerche, A., Guan, S., Aljeri, N., 2016. A modular distributed simulation-based architecture for intelligent transportation systems. Concurrency and Computation-Practice & Experience 28(12), pp. 3409-3426. https://doi.org/10.1002/cpe.3801

Dellios, K., Papanikas, D., Polemi, D., 2015. Information security compliance over Intelligent Transport Systems: Is IT possible?. IEEE Security & Privacy 13(3), pp. 9-15. https://doi.org/10.1109/msp.2015.59

Deutschbein, C., Fleming, T., Burns, A., Baruah, S., 2017. Multi-core Cyclic Executives for Safety-Critical Systems. In: Larsen K., Sokolsky O., Wang J. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2017. Lecture Notes in Computer Science, vol 10606. Springer, Cham, pp. 94-109. https://doi.org/10.1007/978-3-319-69483-2_6

Doecke, S., Grant, A., Anderson R.W.G., 2015. The real-world safety potential of connected vehicle technology. Traffic Injury Prevention 16(1), pp. 31-35. https://doi.org/10.1080/15389588.2015.1014551

Festag, A., 2014. Cooperative intelligent transport systems standards in Europe. IEEE Communications Magazine 52(12), pp. 166-172. https://doi.org/10.1109/mcom.2014.6979970

Fleming, T., Huang, H.-M., Burns, A., Gill, C., Baruah, S., Lu, C., 2017. Corrections to and discussion of "implementation and evaluation of mixedcriticality scheduling approaches for sporadic tasks". ACM Transactions on Embedded Computing Systems 16(3), 77. https://doi.org/10.1145/2974020

Flores, C., Milanes, V., Nashashibi, F., 2016. Using fractional calculus for cooperative car-following control. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 907-912. https://doi.org/10.1109/itsc.2016.7795663

Garrido, F., Gonzalez, D., Milanes, V., Perez, J., Nashashibi, F., 2016. Realtime planning for adjacent consecutive intersections. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1108-1113. https://doi.org/10.1109/itsc.2016.7795695

Godoy, J., Milanes, V., Perez, J., Villagra, J., Onieva, E., 2013. An auxiliary V2I network for road transport and dynamic environments. Transportation Research Part C-Emerging Technologies 37, 145-156. https://doi.org/10.1016/j.trc.2013.09.012

Hafner, M.R., Cunningham, D., Caminiti, L., Del Vecchio, D., 2013. Cooperative collision avoidance at intersections: algorithms and experiments. IEEE Transactions on Intelligent Transportation Systems 14(3), pp. 1162-1175. https://doi.org/10.1109/tits.2013.2252901

Han, J.J., Tao, X., Zhu, D.K., Yang, L.T., 2017. Resource sharing in multicore mixed-criticality systems: utilization bound and blocking overhead. IEEE Transactions on Parallel and Distributed Systems 28(6), pp. 3626-3641. https://doi.org/10.1109/tpds.2017.2677442

Kato, S., Tsugawa, S., Tokuda, K., Matsui, T., Fujii, H., 2002. Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications. IEEE Transactions on Intelligent Transportation Systems 3(3), pp. 155-161. https://doi.org/10.1109/tits.2002.802929

Kim, J., Moon, Y.J., Suh, I.S., 2015. Smart mobility strategy in Korea on sustainability, safety and efficiency toward 2025. IEEE Intelligent Transportation Systems Magazine 7(3), pp. 58-67. https://doi.org/10.1109/mits.2015.2474995

Kliem, D., Voigt, S.O., 2014. scalability evaluation of an FPGA-based multicore architecture with hardware-enforced domain partitioning. Microprocessors and Microsystems 38(8), pp. 845-859. https://doi.org/10.1016/j.micpro.2014.02.006

Kotb, A.O., Shen Y.C., Zhu, X., Huang, Y., 2016. iParker—a new smart carparking system based on dynamic resource allocation and pricing. IEEE Transactions on Intelligent Transportation Systems 17(9), pp. 2637-2647. https://doi.org/10.1109/tits.2016.2531636

Larue, G.S., Kim, I., Rakotonirainy, A., Haworth, N.L., Ferreira, L., 2015. Driver’s behavioural changes with new intelligent transport system interventions at railway level crossings—A driving simulator study. Accident Analysis and Prevention, 81, pp. 74-85. https://doi.org/10.1016/j.aap.2015.04.026

Larue, G.S., Rakotonirainy, A., Haworth, N.L., Darvell, M., 2015. Assessing driver acceptance of Intelligent Transport Systems in the context of railway level crossings. Transportation Research Part F-Traffic Psychology and Behaviour 30, pp. 1-13. https://doi.org/10.1016/j.trf.2015.02.003

Li, J., Ferry, D., Ahuja, S., Agrawal, K., Gill, C., Lu, C.Y., 2017. Mixedcriticality federated scheduling for parallel real-time tasks. Real-time systems 53(5), pp.760-811. https://doi.org/10.1007/s11241-017-9281-8

Lu, L., Feng, D.Q., Chu, J., 2013. Improving the real-time performance of Ethernet for plant automation (EPA) based industrial networks. Journal of Zhejiang University-Science C-Computers & Electronics 14(6), pp. 433-448. https://doi.org/10.1631/jzus.c1200363

Ott, J., Kutscher, D., 2006. A modular access gateway for managing intermittent connectivity in vehicular communications. Transactions on Emerging Telecommunications Technologies 17(2), pp. 159-174. https://doi.org/10.1002/ett.1098

Poslad, S., Ma A., Wang Z., Mei, H., 2015. Using a Smart City IoT to incentivise and target shifts in mobility behaviour—is it a piece of pie?. Sensors 15(6), pp., 13069-13096. https://doi.org/10.3390/s150613069

Reghenzani, F., Massari, G., Fornaciari, W., 2017. Mixed time-criticality process interferences characterization on a multicore Linux system. 2017 Euromicro Conference on Digital System Design (DSD), pp. 427-434. https://doi.org/10.1109/dsd.2017.18

Regulation (EU) No 165/2014 of the European Parliament and of the Council of 4 February 2014 on tachographs in road transport, repealing Council Regulation (EEC) No 3821/85 on recording equipment in road transport and amending Regulation (EC) No 561/2006 of the European Parliament and of the Council on the harmonisation of certain social legislation relating to road transport Text with EEA relevance. OJ L 60, 28.2.2014, p.1–33 (BG, ES, CS, DA, DE, ET, EL, EN, FR, GA, HR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV) https://doi.org/10.5040/9781509923205.0014

Ross, E., 2016. Tesla feature lets cars come when called. IEEE Spectrum.

Stübing, H., 2013. Multilayered security and privacy protection in Car-to-X networks. Springer Vieweg, Darmstadt, Germany. https://doi.org/10.1007/978-3-658-02531-1

Vahidi, A., Eskandarian, A., 2003. Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems 4(3), pp. 143-153. https://doi.org/10.1109/tits.2003.821292

Wallmark, O., Nybacka, M., Malmquist, D., Burman, M., Wennhage, P., Georen, P., 2014. Design and implementation of an experimental research and concept demonstration vehicle. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC) https://doi.org/10.1109/vppc.2014.7007042

Wang, Y., Liang, S., Yao, S., Shan, Y., Han, S., Peng, J., Luo, H., 2017. Reconfigurable processor for deep learning in autonomous vehicles. ITU Journal: ICT Discoveries 1.

Woo, S., Jo, H.J., Lee, D.H., 2015. A practical wireless attack on the connected car and security protocol for in-vehicle CAN. IEEE Transactions on Intelligent Transportation Systems 16(2), pp. 993-1006. https://doi.org/10.1109/tits.2014.2351612

Abstract Views

2912
Metrics Loading ...

Metrics powered by PLOS ALM




Licencia Creative Commons

Esta revista se publica bajo unaLicencia Creative Commons Atribución 4.0 Internacional.

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912