Vectores Virtuales de Tensión en Control Directo de Par para una Máquina de Inducción de Seis Fases

Paula García Entrambasaguas, Ignacio González Prieto, Mario Javier Durán Martínez, Mario Bermúdez Guzmán, Federico José Barrero García

Resumen

Las máquinas multifásicas se presentan como una alternativa real en aquellas aplicaciones industriales que requieren unas mejores prestaciones que las proporcionadas por los sistemas convencionales trifásicos. La tendencia habitual para su regulación ha sido extender los métodos de control de sistemas trifásicos a las nuevas condiciones multifásicas. Dentro de los métodos de control estándar en accionamientos trifásicos se encuentra el control directo de par (DTC por sus siglas en inglés), el cual ha sido popular en las últimas décadas gracias a su rapidez, robustez y simplicidad. La extensión de la estrategia DTC a accionamientos multifásicos se presenta a priori con gran atractivo, ya que el número de estados de conmutación aumenta y esto permite mejorar las prestaciones al aproximarse mejor a la tensión óptima de aplicación. No obstante, la aparición de unas nuevas componentes secundarias de corriente, denominadas x-y en la literatura, pueden deteriorar la calidad de las corrientes y aumentar las pérdidas en el cobre del estator si no se regulan adecuadamente. Como quiera que estas corrientes únicamente están limitadas por la resistencia e inductancia de dispersión del estator en máquinas con devanados distribuidos, la reducción de los armónicos asociados a estas componentes secundarias es uno de los principales retos de los métodos de control de accionamientos multifásicos. La definición y utilización de vectores virtuales de tensión permiten la reducción de estas componentes x-y, paliando así el principal problema de la extensión directa del DTC a sistemas con más de tres fases. Este artículo presenta la implementación de vectores virtuales de tensión en un control directo de par para la regulación de la velocidad de máquina de inducción de seis fases, validando la bondad de la estrategia de control propuesta mediante resultados experimentales.

Palabras clave

Maquinaria eléctrica y electrónica; electrónica de potencia;Control directo de par; máquina de inducción multifásica; vectores virtuales de tensión

Clasificación por materias

Control de máquinas y motores y mecatrónica

Texto completo:

PDF

Referencias

Abdel-Khalik, A.S., Masoud, M.I. y Williams, B.W. 2012. Improved flux pattern with third harmonic injection for multiphase induction machines. IEEE Transactions on Power Electronics 27, No. 3, 1563-1578.

Abdel-Khalik, A.S., Masoud, M.I. y Williams, B.W. 2012. Vector controlled multiphase induction machine: harmonic injection using optimized constant gains. Electric Power Systems Research 89, 116-128.

Alcharea, R., Kianinezhad, R., Nahid-Mobarakeh, B., Betin, F. y Capolino, G.A. 2008. Direct torque control for six-phase symmetrical induction machines. 34th Annual Conference of IEEE Industrial Electronics.

Arahal, M.R. y Durán, M.J. 2009. PI tuning of five-phase drives with third harmonic injection. Control Engineering Practice 17, 787-797.

Arnanz, R., García, F.J. y Miguel, L.J. 2016. Métodos de control de motores de inducción: síntesis de la situación actual. Revista Iberoamericana de Automática e Informática industrial 13, 381–392.

Barrero, F. y Durán, M.J. 2016. Recent advances in the design modeling, and control of multiphase machines – Part I. IEEE Transactions on Industrial Electronics 63, No. 1, 449-458.

Benatmane, M. y McCoy, T. 1998. Development of a 19 MW PWM converter for U.S. Navy surface ships. Proc. Int. Conf. ELECSHIP, Istanbul, Turkey, 109-113.

Bermúdez, M., González-Prieto, I., Barrero, F., Guzmán, H., Durán, M.J. y Kestelyn, X. 2017. Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives. IEEE Transactions on Industrial Electronics 64, No. 2, 902-911.

Bojoi, R., Levi, E., Farina, F., Tenconi, A. y Proumo, F. 2006. Dual three-phase induction motor drive with digital current control in the stationary reference frame. IEEE Proceedings Electric Power Applications 153, No. 1, 29-139.

Che, H.S., Levi, E., Jones, M., Hew, W.P. y Rahim, N.A. 2014a. Current control methods for an asymmetrical six-phase induction motor drive. IEEE Transactions on Power Electronics 29, No. 1, 407-417.

Che, H.S., Levi, E., Jones, M., Durán, M.J., Hew, W.P. y Rahim, N.A. 2014b. Operation of a six-phase induction machine using series-connected machine-side converters. IEEE Transactions on Industrial Electronics 61, No. 1, 164-176.

Che, H.S., Durán, M.J., Levi, E., Jones, M., Hew, W.P. y Rahim, N.A. 2013. Post-fault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points. IEEE Energy Conversion Congress and Exposition, 1131-1138.

Cortés, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E. y Rodríguez, J. 2008. Predictive control in power electronics and drives. IEEE Transactions on Industrial Electronics 55, No. 12, 4312-4324.

Durán, M.J., Riveros, J.A., Barrero, F., Guzmán, H. y Prieto, J. 2012. Reduction of common-mode voltage in five-phase induction motor drives using predictive control techniques. IEEE Transactions on Industrial Applications 48, No. 6, 2059-2067.

Durán, M.J. y Barrero, F. 2016. Recent Advances in the design modeling, and control of multiphase machines – Part II. IEEE Transactions on Industrial Electronics 63, No. 1, 459-468.

Ferreira, C.L. y Bucknall, R.W.G. 2004. Modelling and real-time simulation of an advanced marine full-electrical propulsion system. Proc. IEEE PEMD Conference, Edinburgh, U.K., 2, No. 498, 574-579.

Gamesa Technological Corporation S.A., 2016. Gamesa 5.0 MW. Recuperado de: http://www.gamesacorp.com/recursos/doc/ productos-servicios/aerogeneradores/catalogo-g10x-45mw.pdf

Gao, L., Fletcher, J.E. y Zheng, L. 2011. Low-speed control improvements for a two-level five-phase inverter-fed induction machine using classic direct torque control. IEEE Transactions on Industrial Electronics 58, No. 7, 2744-2754.

González, O., Rodas, J., Ayala, M., Gregor, R., Rivera, M., Durán, M. y González-Prieto, I. 2016. Predictive current control with kalman filter observer for a five-phase induction machine operating at fixed switching frequency.

González-Prieto, I., Durán, M.J., Barrero, F., Bermúdez, M. y Guzmán, H. 2017. Impact of postfault flux adaptation on six-phase induction motor drives with parallel converters. IEEE Transactions on Power Electronics 32, No. 1, 515-528.

González-Prieto, I., Durán, M.J., Che, H.S., Levi, E., Bermúdez, M. y Barrero, F. 2016. Fault-tolerant operation of six-phase energy conversion systems with parallel machine-side converters. IEEE Transactions on Power Electronics 31, No. 4, 3068-3079.

González-Prieto, I., Durán, M.J. y Barrero, F. 2016. Fault-tolerant control of six-phase induction motor drives with variable current injection. IEEE Transactions on Power Electronics.

Gregor, R., Rodas, J., Gregor, D. y Barrero, F. 2015. Reduced-order observer analysis in MBPC techniques applied to the six-phase induction motor drives. INTECH Open Science.

Guzmán, H., Durán, M.J. y Barrero, F. 2012. A comprehensive fault analysis of a five-phase induction motor drive with an open phase. 15th International Power Electronics and Motion Control Conference, LS5b.3-1 – LS5b.3-6.

Guzmán, H., Durán, M.J., Barrero, F., Bogado, B. y Toral, S. 2014. Speed control of five-phase induction motors with integrated open-phase fault operation using model-based predictive current control techniques. IEEE Transactions on Industrial Electronics 61, No. 9, 4474-4484.

Guzmán, H., Durán, M.J., Barrero, F., Zarri, L., Bogado, B., González-Prieto, I. y Arahal, M.R. 2016. Comparative study of predictive and resonant controllers in fault-tolerant five-phase induction motor drives. IEEE Transactions on Industrial Electronics 63, No. 1, 606-617.

Hodge, C., Williamson, S. y Smith, A.C. 2002. Direct drive marine propulsion motors. Proc. Int. Conf. Electrical Machines (ICEM), Bruges, Belgium, CD-ROM, Paper 807.

Jones, M., Slobodan, N., Vukosavic, S., Dujic, D. y Levi, E. 2009. A synchronous current control scheme for multiphase induction motor drives. IEEE Transactions on Energy Conversion 24, No. 4, 860-868.

Jung, E., Yoo, H., Sul, S., Choi, H. y Choi, Y. 2012. A nine-phase permanent-magnet motor drive system for an ultrahigh-speed elevator. IEEE Transactions on Industrial Applications 48, No. 3, 987-995.

Khan, M.R., Iqbal, A. y Ahmad, M. 2008. MRAS-based sensorless control of a vector controlled five-phase induction motor drive. Electric Power Systems Research 78, 1311-1321.

Kianinezhad, R., Nahid, B., Betin, F. y Capolino, G.A. 2006. A novel direct torque control (DTC) method for dual three phase induction motors. IEEE International Conference on Industrial Technology.

Kianinezhad, R., Alcharea, R., Nahid, B., Betin, F. y Capolino, G.A. 2008. A novel direct torque control (DTC) for six-phase induction motors witch common neutrals. IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion.

Kouro, S., Cortés, P., Vargas, R., Ammann, U. y Rodríguez, J. 2009. Model predictive control – a simple and powerful method to control power converters. IEEE Transactions on Industrial Electronics 56, No. 6, 1826-1838.

Levi, E. 2016. Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Transactions on Industrial Electronics 63, No. 1, 433-448.

Libo, Z., Fletcher, J.E., Williams, B.W. y Xiangning, H. 2008. Dual-plane vector control of a five-phase induction machine for an improved flux pattern. IEEE Transactions on Industrial Electronics 55, No. 5, 1996-2005.

Lu, S. y Corzine, K. 2005. Multilevel multi-phase propulsion drives. Proc. IEEE ESTS, Philadelphia, PA, 363-370.

Martín, C., Arahal, M.R., Barrero, F. y Durán, M.J. 2016. Five-phase induction motor rotor current observer for finite control set model predictive control of stator current. IEEE Transactions on Industrial Electronics 63, No. 7, 4527-4538.

McCoy, T. y Benatmane, M. 1998. The all-electric warship: An overview of the U.S. Navy’s integrated power system development programme. Proc. Int. Conf. ELECSHIP, Istanbul, Turkey, 1-4.

Mengoni, M., Zarri, L., Tani, A., Parsa, L., Serra, G. y Casadei, D. 2015. High-torque density control of multiphase induction motor drives operating over a wide speed range. IEEE Transactions on Industrial Electronics 62, No. 2, 814-825.

Munim, W.N.W.A., Durán, M.J. Che, H.S, Bermúdez, M. y González-Prieto, I 2016. A unified analysis of the fault tolerance capability in six-phase induction motor drive. IEEE Transactions on Power Electronics.

Pandit, J.K., Aware, M.V., Nemade, R.V. y Levi, E. 2017. Direct torque control scheme for a six-phase induction motor with reduced torque ripple. IEEE Transactions on Industrial Electronics 32, No. 9, 7118-7129.

Ren, Y. y Zhu, Z.Q. 2015a. Enhancement of steady-state performance in direct-torque-controlled dual three-phase permanent-magnet synchronous machine drives with modified switching table. IEEE Transactions on Industrial Electronics 62, No. 6, 3338-3350.

Ren, Y. y Zhu, Z.Q. 2015b. Reduction of both harmonic current and torque ripple for dual three-phase permanent-magnet synchronous machine using modified switching-table-based direct torque control. IEEE Transactions on Industrial Electronics 62, No. 11, 6671-6683.

Ríos-García, N., Durán, M.J., González-Prieto, I., Martín, C. y Barrero, F. 2017. An open-phase fault detection method for six-phase induction motor drives. International Conference on Renewable Energies and Power Quality.

Riveros, A., Yepes, A.G., Barrero, F., Doval-Gandoy, J., Bogado, B., López, O., Jones, M. y Levi, E. parameter identification of multiphase induction machines with distributed windings—Part 2: time-domain techniques. IEEE Transactions on Energy Conversion 27, No. 4, 1067-1077, 2012.

Simoes, M.G. y Vieira, P. 2002. A high-torque low-speed multiphase brushless machine – A perspective application for electric vehicles. IEEE Transactions on Industrial Electronics 49, No. 5, 1154-1164.

Singh, G.K., Nam, K. y Lim, S.K. 2005. A simple indirect field-oriented control scheme for multiphase induction machine. IEEE Transactions on Industrial Electronics 52, No. 4, 1177-1184.

Smith, S. 2002. Developments in power electronics, machines and drives. IEEE Power Engineering Journal 16, No. 1, 13-17.

Sudhoff, S.D., Alt, J.T., Hegner, N.J. y Robey, H.N. Jr. 1997. Control of a 15-phase induction motor drive system. Proc. Naval Symp. Electr. Mach., Newport, RI, 69-75.

Taheri, A. 2016. Harmonic reduction of direct torque control of six-phase induction motor. ISA Transactions 63, 299-314.

Tani, A., Mengoni, M., Zarri, L., Serra, G. y Casadei, D. 2012. Control of multiphase induction motors with an odd number of phases under open-circuit phase faults. IEEE Transactions on Power Electronics 27, No. 2, 565-577.

Terrien, F., Siala, S. y Noy, P. 2004. Multiphase induction motor sensorless control for electric ship propulsion. Proc. IEEE PEMD Conference, Edinburgh, U.K., 2, No. 498, 556-561.

Vukosavic, S., Jones, M., Levi, E. y Varga, J. 2005. Rotor flux oriented control of a symmetrical six-phase induction machine. Electric Power Systes Research 75, No. 2/3, 142-152.

Yaramasu, V., Dekka, A., Durán, M.J., Kouro, S. y Wu, B. 2017. PMSG-based wind energy conversion systems: survey on power converters and control. IET Electric Power Aplications, 13 pp.

Yepes, A.G., Malvar, J., Vidal, A., López, O. y Doval-Gandoy, J. 2015. Current harmonic compensation based on multiresonant control in synchronous frame for symmetrical n-phase machines. IEEE Transactions on Industrial Electronics 62, No. 5, 2708-2720.

Zhao, Y. y Lipo, T.A. 1995. Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Transactions on Industry Applications 31, No. 5, 1100-1109.

Zheng, L., Fletcher, J.E., Williams, B.W. y He, X. 2011. A novel direct torque control scheme for a sensorless five-phase induction motor drive. IEEE Transactions on Industrial Electronics 58, No. 2, 503-513.

Abstract Views

38
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912