Modelo de predicción de demanda de energía eléctrica mediante técnicas Set-Membership

Jimena Diaz, Jose Vuelvas, Fredy Ruiz, Diego Patiño

Resumen

En este artículo se propone un modelo para la predicción de demanda de energía eléctrica a corto plazo empleando técnicas de estimación Set Membership. El modelo está compuesto por una componente periódica y una componente no-lineal auto-regresiva generada por un modelo no-paramétrico adaptable que incorpora datos recientes al conjunto de identificación en cada iteración del algoritmo. El modelo es evaluado en un caso de estudio con mas de 13,000 muestras de demanda horaria a lo largo de tres años, registradas en un municipio rural de Colombia. El desempeño del estimador se compara con un modelo lineal auto-regresivo y un modelo Set Membership con conjunto de identificación fijo. Los resultados muestran que el estimador propuesto logra predecir la demanda de energía con un error RMS inferior al 2.5 % en datos de validación, empleando solo un 5 % de los datos disponibles para la construcción del modelo.


Palabras clave

Gestión y demanda energética ; Filtrado adaptativo; Identificación de sistemas

Clasificación por materias

150: Control de procesos industriales, sistemas energéticos, mineros, ingeniería civil y edificios; 80:Filtrado, estimación y análisis y tratamiento de señales e imágenes; 100:Modelado, identificación, simulación y optimización de sistemas

Texto completo:

PDF

Referencias

Acosta, A., González, A., Zamarreno, J., Álvarez, V., 2011. Modelo para la predicción energética de una instalación hotelera. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (4), 309 - 322. https://doi.org/10.1016/j.riai.2011.09.001

Alam, A., Upadhyay, S., Murthy, C. H., Reddy, M. J. B., Jana, K. C., Mohanta, D. K., 2012. Reliability evaluation of solar photovoltaic microgrid. In: Environment and Electrical Engineering (EEEIC), 2012 11th International Conference on. pp. 490-495. https://doi.org/10.1109/EEEIC.2012.6221427

Alfares, H. K., Nazeeruddin, M., 2002. Electric load forecasting: Literature survey and classification of methods. International Journal of Systems Science 33 (1), 23-34. https://doi.org/10.1080/00207720110067421

Bordons, C., Torres, F. G., Valverde, L., 2015. Gestión Óptima de la energía en microrredes con generación renovable. Revista Iberoamericana de Automática e Informática Industrial RIAI 12 (2), 117 - 132. https://doi.org/10.1016/j.riai.2015.03.001

Castano, J., Ruiz, F., 2013. Set membership identification of an excimer lamp for fast simulation. Control Engineering Practice 21 (1), 96 – 104. https://doi.org/10.1016/j.conengprac.2012.09.013

Dang, H. Q., 2014. Time series outlier detection in spacecraft data. Ph.D. thesis, Knowledge Engineering Group, TU Darmstadt.

Dwijayanti, S., Hagan, M., 2013. Short Term Load Forecasting Using a Neural Network Based Time Series Approach. 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation (1), 17-22. https://doi.org/10.1109/AIMS.2013.11

Hanmandlu, M., Chauhan, B. K., 2011. Load forecasting using hybrid models. IEEE Transactions on Power Systems 26 (1), 20-29. https://doi.org/10.1109/TPWRS.2010.2048585

He, Y., Xu, Q.,Wan, J., Yang, S., 2016. Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function. Energy 114, 498-512. https://doi.org/10.1016/j.energy.2016.08.023

Hu, Z., Bao, Y., Xiong, T., Chiong, R., 2015. Hybrid filter-wrapper feature selection for short-term load forecasting. Engineering Applications of Artificial Intelligence 40, 17-27. https://doi.org/10.1016/j.engappai.2014.12.014

Kapgate, D., Mohod, S., 2014. Hybrid wavenet model for short term electrical load forecasting. In: 2014 Conference on IT in Business, Industry and Government (CSIBIG). No. 1. pp. 1-8. https://doi.org/10.1109/CSIBIG.2014.7057008

Lopes, J. P., Hatziargyriou, N., Mutale, J., Djapic, P., Jenkins, N., 2007. Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Systems Research 77 (9), 1189 - 1203. https://doi.org/10.1016/j.epsr.2006.08.016

Mikati, M., Santos, M., Armenta, C., 2012. Modelado y simulación de un sistema conjunto de energía solar y eólica para analizar su dependencia de la red eléctrica. Revista Iberoamericana de Automática e Informática Industrial RIAI 9 (3), 267 - 281. https://doi.org/10.1016/j.riai.2012.05.010

Milanese, M., Novara, C., 2004. Set Membership identification of nonlinear systems. Automatica 40 (6), 957-975. https://doi.org/10.1016/j.automatica.2004.02.002

Milanese, M., Novara, C., Nov 2005. Set membership prediction of nonlinear time series. IEEE Transactions on Automatic Control 50 (11), 1655-1669. https://doi.org/10.1109/TAC.2005.858693

Nose-Filho, K., Lotufo, A. D. P., Minussi, C. R., 2011b. Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network. IEEE Transactions on Power Delivery 26 (4), 2862-2869. https://doi.org/10.1109/TPWRD.2011.2166566

Oliveira, M. O., Marzec, D. P., Bordin, G., Bretas, a. S., Bernardon, D., 2011. Climate change e_ect on very short-term electric load forecasting. 2011 IEEE Trondheim PowerTech 190, 1-7. https://doi.org/10.1109/PTC.2011.6019249

Parkpoom, S., Harrison, G., Bialek, J., 2004. Climate change impacts on electricity demand. 39th International Universities Power Engineering Conference, 2004. UPEC 2004. 3 (Table I), 1342-1346

Sadaei, H. J., Enayatifar, R., Abdullah, A. H., Gani, A., 2014. Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. International Journal of Electrical Power & Energy Systems 62 (from 2005), 118-129. https://doi.org/10.1016/j.ijepes.2014.04.026

Singh, N. K., Singh, A. K., Tripathy, M., 2015. A comparative study of BPNN, RBFNN and ELMAN neural network for short-term electric load forecasting: A case study of Delhi region. 9th International Conference on Industrial and Information Systems, ICIIS 2014. https://doi.org/10.1109/ICIINFS.2014.7036502

Ueckerdt, F., Brecha, R., Luderer, G., 2015. Analyzing major challenges of wind and solar variability in power systems. Renewable Energy 81, 1 - 10. https://doi.org/10.1016/j.renene.2015.03.002

Yalcinoz, T., Eminoglu, U., 2005. Short term and medium term power distribution load forecasting by neural networks. Energy Conversion and Management 46 (9-10), 1393-1405. https://doi.org/10.1016/j.enconman.2004.07.005

Abstract Views

2690
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912