Músculos Inteligentes en Robots Biológicamente Inspirados: Modelado, Control y Actuación

J. Colorado, A. Barrientos, C. Rossi

Resumen

Las aleaciones metálicas que exhiben una propiedad conocida como efecto de memoria de forma, pertenecen a la clase de materiales inteligentes cuya aplicación más notable en el campo de la robótica se refleja en el uso de actuadores musculares artificiales, ó músculos inteligentes. Estos materiales tienen una estructura cristalina uniforme que cambia radicalmente en función de su temperatura de transición, causando su deformación. Se les denomina materiales inteligentes por la capacidad de recordar su configuración inicial después de recibir dicho estímulo térmico. Este artículo presenta la implementación de un actuador muscular inteligente aplicado en un micro-robot aéreo bio-inspirado tipo murciélago. Esto mamíferos voladores desarrollaron poderosos músculos que se extienden a lo largo de la estructura ósea de las alas, adquiriendo una asombrosa capacidad de maniobra gracias a la capacidad de cambiar la forma del ala durante el vuelo. Replicar este tipo de alas mórficas en un prototipo robótico requiere el análisis de nuevas tecnologías de actuación, abordando los problemas de modelado y control que garanticen la aplicabilidad de este actuador compuesto por fibras musculares de SMAs.

Palabras clave

Aleación con Memoria de Forma (SMA); Robots bio-inspirados; Alas mórficas

Texto completo:

PDF

Referencias

Aldridge, H., 1986. Kinematics and aerodynamics of the greater horseshoe bat, rhinolophus ferrumequinum, in horizontal flight at various flight speeds. Journal of Experimental Biology 126, 479–497.

Bar-Cohen, Y., 2004. Electroactive Polymer (EAP) Actuators as Artificial Muscles. SPIE Press, Second edition, Bellingham, Washington USA.

Brinson, L., 1993. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures 4, 229–242.

Choon, T., Salleh, A., Saifulnizan, J., Ghazali, M., 2007. Phase transformation temperatures for shape memory alloy wire. In: World Academy of Science, Engineering and Technology. pp. 304–307.

Colorado, J., Barrientos, A., Rossi, C., 2011. Biomechanics of morphing wings in a bat-robot actuated by sma muscles. In: International Workshop on bioinspired robots, Nantes, France. pp. 1–3.

Deng, X., Schenato, L., Wu, W., 2006. Flapping flight for biomimetic robotic insects: Part i - system modeling. IEEE Transactions on Robotics 22 (4), 776–788.

Elahinia, M., 2002. Nonlinear control of a shape memory alloy actuated manipulator. Ph.D. thesis, Villanova University.

Elahinia, M., Seigler, T., Leo, D., Ahmadian, M., 2004. Nonlinear stress-based control of a rotary sma-actuated manipulator. J. Intell. Mater. Syst. Struct 15, 495–508.

Hirose, S., 1993. Biologically Inspired Robots: Snake-like Locomotors and Manipulators. Oxford University Press.

Je-Sung, K., Kyu-Jin, C., 2010. Omegabot: Crawling robot inspired by ascotis selenaria. In: in Proc. of the IEEE International Conference on Robotics and Automation. pp. 109–114.

Johnson, EA and EMartynov, D., Gupta, V., Vikas, 2001. Applications of shape memory alloys: advantages, disadvantages, and limitations. In: in Proc. of Micromachining and Microfabrication Process Technology VII. pp. 341– 351.

Kyu-Jin, C., Hawkes, E., Quinn, C., Wood, R., 2008. Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish. In: in Proc. of the IEEE International Conference on Robotics and Automation. pp. 706–711.

Landau, L., Lifshitz, E., 1986. Theory of Elasticity. Theoretical Physics Volume 7, (Third ed.). Butterworth Heinemann, Boston, MA.

Ma, N., Song, G., 2003. Control of shape memory alloy actuator using pulse width modulation. Smart Mater. Struct 12, 712–719.

Madden, J., Vandesteeg, N., Anquetil, P., Madden, A., Takashi, A., Pytel, R., Lafontaine, S., Wieringa, P., Hunter, I., 2004. Artificial muscle technology: Physical principles and naval prospects. IEEE Journal of oceanic engineering 29 (3).

Manzo, J., Garcia, E., 2008. Optimization and implementation of the smart joint actuator. In: in Proc. of Active and Passive Smart Structures and Integrated Systems. pp. 692810–692810.

Norberg, L., Brooke, A., Trewhella, W., 2000. Soaring and non-soaring bats of the family pteropodidae (fying foxes, pteropus spp.): wing morphology and flight performance. Journal of Experimental Biology 203, 651–664.

Pons, J., 2007. Emerging Actuator Technologies. John Wiley and Son.

Riskin, D., Willis, D., Iriarte-Diaz, J., Hedrick, T., Kostandov, M., Chen, J., Laidlaw, D., Breuer, K., Swartz, S., 2008. Quantifying the complexity of bat wing kinematics. Journal of Theoretical Biology 254, 604–615.

Rossi, C., Coral, W., Colorado, J., Barrientos, A., 2011. A motor-less and gearless bio-mimetic robotic fish design. In: in Proc. of the IEEE International Conference on Robotics and Automation. pp. 1–6.

Sane, S., 2003. The aerodynamics of insect flight. Journal of Experimental Biology 206 (23), 4191–4208.

Shin, B., Ho-Young, K., Kyu-Jin, C., 2008. Towards a biologically inspired small-scale water jumping robot. In: in Proc. of the International Conference on Biomedical Robotics and Biomechatronics. pp. 127–131.

Shrivastava, S., 2006. Simulation for thermomechanical behavior of shape memory alloy (sma) using comsol multiphysics. In: in Proc. of the COMSOL Users Conference. pp. 1–5.

Song, G., Kelly, B., Agrawal, B., 2000. Active position control of a shape memory alloy wire actuated composite beam. Smart Mater. Struct 9, 755–766.

Stefan, B., Williams, O., Jody, M., Robin, J., Ian, M., Matthew, J., C.L, T., 2010. Autonomous underwater vehicle-assisted surveying of drowned reefs on the shelf edge of the great barrier reef, australia. Journal of Field Robotics 27, 675–697.

Strelec, J., Lagoudas, D., 2002. Fabrication and testing of a shape memory alloy actuated reconfigurable wing. In: in Proc. of Int. Symp. on Smart Structures and Materials. pp. 267–80.

Swartz, S., Groves, M., Kim, H., Walsh, W., 1996. Mechanical properties of bat wing membrane skin. J. Zool 239, 357–378.

Tanaka, K., 1986. A thermomechanical sketch of shape memory effect: Onedimensional tensile behaviour. International Journal of Structural Mechanics and Materials Science 18, 251–263.

Teh, Y., Featherstone, R., 2007. Accurate force control and motion disturbance rejection for shape memory alloy actuators. In: in Proc. of the IEEE International Conference on Robotics and Automation. pp. 4454–4459.

Vitiello, A., Giorleo, G., Renata, E., 2005. Analysis of thermomechanical behaviour of nitinol wires with high strain rates. Smart Mater. Struct 14, 215– 221.

Wood, R., 2007. Design, fabrication, and analysis of a 3dof, 3cm flapping-wing mav. In: in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 1576–1581.

Xiu, F., Ya, N., Shu, X., Yu, D., 2010. Driving mechanism of a new jellyfish-like microrobot. In: in Proc. of the IEEE International Conference on Mechatronics and Automation. pp. 563–568.

Yang, S., Seelecke, S., 2009. Fe analysis of sma-based bio-inspired bone joint system. Smart Mater. Struct 18, 104020.

Zaki, W., Morin, C., Moumni, Z., 2010. A simple 1d model with thermomechanical coupling for superelastic smas. In: IOP Conf. Series: Materials Science and Engineering. pp. 1–7.

Abstract Views

536
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912